G0W0 Calculations of optoelectronic properties of Graphene/hBN for Solar cells and near infrared Photodetector.

Authors

  • Dauda Abubakar Department of Physics, Faculty of Science, Sa’adu Zungur University, Gadau, Bauchi State, Nigeria
  • Musa Muhammad Salihu Department of Physics, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
  • Abdullahi Lawal Department of Physics, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
  • Musa Bello Department of Physics, Federal University of Education, Zaria, Kaduna State, Nigeria
  • Ahmed Musa Kona Department of Physics, Federal University of Education, Zaria, Kaduna State, Nigeria
  • Sadiq Abubakar Dalhatu Federal University of Health Sciences Azare, Bauchi State, Nigeria

DOI:

https://doi.org/10.54117/gjpas.v3i2.152

Keywords:

Graphene, hBN, DFT, G0W0, Electron-electron interaction

Abstract

It is known that low optical absorption in graphene-based devices can be dramatically improved. However, integrating hexagonal boron nitride (hBN) with graphene in a heterostructure appears to be a promising approach to open the band gap in graphene in order to overcome the low absorption behavior in graphene-based devise for optoelectronic applications. Hence, to expose the hidden potential of hBN heterostructure, detailed knowledge of its electronic properties are needed. In this paper, electronic properties of hBN/graphene heterostructure are performing by highly accurate first-principles many-body perturbation theory. The calculated G0W0 band gap of hBN sheet was found to be 6.09 eV and this value is in good agreement with experimental value of 6 eV. For the heterostructure the calculated band gaps of hBN/graphene by varying the interlayer distance from 1.5 to 3.5 Å  was found to be 1.76, 1.70, 0.84, 0.22 0.04 eV for interlayer distance of 1.5, 2.0, 2.5, 3.0 and 3.5 eV. The energy analysis of hBN/graphene heterostructure reveals that the most stable configuration is the one in which the either B or N atom of hBN facing to graphene is above the hole center of graphene. More attractively, strong absorption within visible light wavelengths in hBN/graphene sheets suggest that the heterostructure is a promising candidate for solar cells applications.

References

Aga, G. S., Singh, P., & Geffe, C. A. (2023). First‐Principles Study of the Quasi‐Particle and Excitonic Effect in o‐BC2N: The GW+ BSE Study. Advances in Condensed Matter Physics, 2023(1), 7808434.

Ahmed, M. S., Begum, H., Kim, Y.-B., & Jung, S. (2021). Surface functionalization of acidified graphene through amidation for enhanced oxygen reduction reaction. Applied Surface Science, 536, 147760.

Chen, H.-T., Padilla, W. J., Zide, J. M., Gossard, A. C., Taylor, A. J., & Averitt, R. D. (2006). Active terahertz metamaterial devices. Nature, 444(7119), 597-600.

Dal Corso, A., Baroni, S., Resta, R., & de Gironcoli, S. (1993). Ab initio calculation of phonon dispersions in II-VI semiconductors. Physical Review B, 47(7), 3588.

Das, S., Pandey, D., Thomas, J., & Roy, T. (2019). The role of graphene and other 2D materials in solar photovoltaics. Advanced Materials, 31(1), 1802722.

Ersan, G., Apul, O. G., Perreault, F., & Karanfil, T. (2017). Adsorption of organic contaminants by graphene nanosheets: A review. Water research, 126, 385-398.

Escudero, D., Duchemin, I., Blase, X., & Jacquemin, D. (2017). Modeling the Photochrome–TiO2 Interface with Bethe–Salpeter and Time-Dependent Density Functional Theory Methods. The journal of physical chemistry letters, 8(5), 936-940.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Dabo, I. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.

Godby, R., & Needs, R. (1989a). Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. Physical review letters, 62(10), 1169.

Godby, R., & Needs, R. (1989b). The metal-insulator transition in quasiparticle theory and Kohn-Sham theory. Physical review letters, 62(10), 1169-1172.

Harsha, G., Abraham, V., Wen, M., & Zgid, D. (2024). Quasiparticle and fully self-consistent GW methods: an unbiased analysis using Gaussian orbitals. arXiv preprint arXiv:2406.18077.

Huang, B., & Lee, H. (2012). Defect and impurity properties of hexagonal boron nitride: A first-principles calculation. Physical Review B, 86(24), 245406.

Huang, X., Guan, J., Lin, Z., Liu, B., Xing, S., Wang, W., & Guo, J. (2017). Epitaxial growth and band structure of Te film on graphene. Nano letters, 17(8), 4619-4623.

Hybertsen, M. S., & Louie, S. G. (1984). Non-local density functional theory for the electronic and structural properties of semiconductors. Solid State Communications, 51(7), 451-454.

Idris, B., Lawal, A., Abubakar, D., & Dalhatu, S. A. (2021). Ab initio Calculation of CuSbSe2 in Bulk and Monolayer for Solar Cell and Infrared Optoelectronic Applications. Communication in Physical Sciences, 7(3).

Idris, M., Shaari, A., Razali, R., Lawal, A., & Ahams, S. (2020). DFT+ U studies of structure and optoelectronic properties of Fe2SiO4 spinel. Computational Condensed Matter, 23, e00460.

Itas, Y. S., Razali, R., Tata, S., Kolo, M., Lawal, A., Alrub, S. A., Khandaker, M. U. (2023). DFT Studies on the Effects of C Vacancy on the CO2 Capture Mechanism of Silicon Carbide Nanotubes Photocatalyst (Si12C12-X; X= 1; 2). Silicon, 1-11.

Itas, Y. S., Suleiman, A. B., Ndikilar, C. E., Lawal, A., Razali, R., Khandaker, M. U., Idris, A. M. (2023). New trends in the hydrogen energy storage potentials of (8, 8) SWCNT and SWBNNT using optical adsorption spectra analysis: a DFT study. Journal of Computational Electronics, 22(6), 1595-1605.

Itas, Y. S., Suleiman, A. B., Ndikilar, C. E., Lawal, A., Razali, R., Ullah, M. H., Khandaker, M. U. (2023). DFT Studies of the Photocatalytic Properties of MoS2-Doped Boron Nitride Nanotubes for Hydrogen Production. ACS Omega.

Jariwala, D., Srivastava, A., & Ajayan, P. M. (2011). Graphene synthesis and band gap opening. Journal of nanoscience and nanotechnology, 11(8), 6621-6641.

Körbel, S., Kammerlander, D., Sarmiento-Pérez, R., Attaccalite, C., Marques, M. A., & Botti, S. (2016). Publisher's Note: Optical properties of Cu-chalcogenide photovoltaic absorbers from self-consistent G W and the Bethe-Salpeter equation Phys. Rev. B 91, 075134 (2015). Physical Review B, 93(15), 159901.

Lawal, A. (2017). Theoretical Study of Structural, Electronic and Optical Properties of Bismuth-Selenide, Bismuth-Telluride and Antimony-Telluride/Graphene Heterostructure for Broadband Photodetector, Universiti Teknologi Malaysia.

Lawal, A., Bello, M., & Kona, A. M. (2022). Quasi-particle band structure and optical properties of Perylene Crystal for Solar Cell Application: A G0W0 Calculations. Communication in Physical Sciences, 8(2).

Lawal, A., Shaari, A., Ahmed, R., & Jarkoni, N. (2017a). First-principles many-body comparative study of Bi2Se3 crystal: A promising candidate for broadband photodetector. Physics Letters A, 381(35), 2993-2999.

Lawal, A., Shaari, A., Ahmed, R., & Jarkoni, N. (2017b). Sb2Te3 crystal a potential absorber material for broadband photodetector: A first-principles study. Results in physics, 7, 2302-2310.

Lawal, A., Shaari, A., Ahmed, R., Taura, L., Madugu, L., & Idris, M. (2019). Sb2Te3/graphene heterostructure for broadband photodetector: A first-principles calculation at the level of Cooper’s exchange functionals. Optik, 177, 83-92.

Lawal, A., Taura, L., Abdullahi, Y. Z., Shaari, A., Suleiman, A. B., Gidado, A., & Chiromawa, I. M. (2022). Corrections of band gaps and optical spectra of N-doped Sb2Se3 from G0W0 and BSE calculations. Physics B: Condensed Matter, 646, 414307.

Liu, H., Xi, P., Xie, G., Shi, Y., Hou, F., Huang, L., Wang, J. (2012). Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. The Journal of Physical Chemistry C, 116(5), 3334-3341.

Liu, X., Chao, D., Su, D., Liu, S., Chen, L., Chi, C., Mai, L. (2017). Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy, 37, 108-117.

Luo, X., Sullivan, M. B., & Quek, S. Y. (2012). First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi 2 Se 3 and Bi 2 Te 3 including van der Waals interactions. Physical Review B, 86(18), 184111.

Margine, E. R., Bocquet, M. L., & Blase, X. (2008). Thermal Stability of Graphene and Nanotube Covalent Functionalization doi: 10.1021/nl801718f]. Nano Letters, 8(10), 3315-3319. https://doi.org/10.1021/nl801718f.

Marini, A., Hogan, C., Grüning, M., & Varsano, D. (2009). Yambo: an ab initio tool for excited state calculations. Computer Physics Communications, 180(8), 1392-1403.

Medeiros, P. V., Stafström, S., & Björk, J. (2014). Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding. Physical Review B, 89(4), 041407.

Mondal, W. R., & Pati, S. K. (2012). A study on the surface states of a topological insulator: Bi2Se3. arXiv preprint arXiv:1208.1482.

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D.-e., Zhang, Y., Dubonos, S. V., Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.

Quílez-Bermejo, J., Morallón, E., & Cazorla-Amorós, D. (2020). Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms. Carbon, 165, 434-454.

Radzwan, A., Ahmed, R., Shaari, A., Ng, Y. X., & Lawal, A. (2018). First-principles calculations of the stibnite at the level of modified Becke–Johnson exchange potential. Chinese journal of physics, 56(3), 1331-1344.

Rohlfing, M., & Louie, S. G. (2000). Electron-hole excitations and optical spectra from first principles. Physical Review B, 62(8), 4927.

Santra, S., Ghosh, A., Das, B., Pal, S., Pal, S., & Adalder, A. (2024). Beyond the horizons of graphene: xenes for energy applications. RSC Sustainability, 2(6), 1631-1674.

Shi, Y., Hamsen, C., Jia, X., Kim, K. K., Reina, A., Hofmann, M., Juang, Z.-Y. (2010). Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano letters, 10(10), 4134-4139.

Solozhenko, V., Lazarenko, A., Petitet, J.-P., & Kanaev, A. (2001). Bandgap energy of graphite-like hexagonal boron nitride. Journal of Physics and Chemistry of Solids, 62(7), 1331-1334.

Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J., Yakobson, B. I. (2010). Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano letters, 10(8), 3209-3215.

Wang, H. S., Chen, L., Elibol, K., He, L., Wang, H., Chen, C., Cong, C. X. (2021). Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nature Materials, 20(2), 202-207.

Wang, N., Yang, G., Wang, H., Yan, C., Sun, R., & Wong, C.-P. (2019). A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Materials Today, 27, 33-42.

Watanabe, K., Taniguchi, T., & Kanda, H. (2004). Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials, 3(6), 404-409.

Xu, S., Al Ezzi, M. M., Balakrishnan, N., Garcia-Ruiz, A., Tsim, B., Mullan, C.Taniguchi, T. (2021). Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nature Physics, 17(5), 619-626.

Yang, Y., Ma, J., Yang, J., & Zhang, Y. (2024). Graphene/h-BN hybrid van der Waals structures with high strength and flexibility: A nanoindentation investigation. Thin-Walled Structures, 195, 111341.

Yusuf, I. D., Suleiman, A. B., Lawal, A., Ndikilar, C. E., Taura, L., Gidado, A., & Chiromawa, I. M. (2024). Significant improvement in structural, electronic, optical and thermoelectric properties of PdTe2 in bulk and monolayer phase: A G0W0+ BSE approach. Physica B: Condensed Matter, 685, 416015.

Zhao, Y., Wu, X., Yang, J., & Zeng, X. C. (2012). Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study. Physical Chemistry Chemical Physics, 14(16), 5545-5550.

Electronic band structure of graphene with GGA+PBE, hBN with GGA+PBE, and hBN with G0W0

Downloads

Published

2024-12-31

How to Cite

G0W0 Calculations of optoelectronic properties of Graphene/hBN for Solar cells and near infrared Photodetector . (2024). Gadau Journal of Pure and Allied Sciences, 3(2), 46-53. https://doi.org/10.54117/gjpas.v3i2.152

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)