Effects of Ir and B co-doping on H2 adsorption properties of armchair carbon nanotubes using Optical Spectra Analysis for energy storage
DOI:
https://doi.org/10.54117/gjpas.v2i1.58Keywords:
Co-doping, hydrogen adsorption, energy storge, iridium, exothermic reactionAbstract
In this research, DFT+U approach was used to investigate the performance of Iridium (Ir) and Boron (B) co-doped armchair (8, 8) Single-walled Carbon Nanotube (SWCNT). Calculations of the structural electronic and optical spectra analysis of the system under study were carried out using the ab’initio quantum simulations implemented in Quantum ESPRESSO and thermo_pw codes within the popular density functional theory. In the doping process, carbon atoms have been replaced by Ir and B atoms in the SWCNT, the investigations were done on the basis of distance of H2 (d) from the co-doped SWCNT at intervals of 6.12 Å, 6.45 Å and 6.77Å, variations of temperature, variations of external electric field, band gaps, optical adsorptions and binding energy variations were all taken in to account. It is found that Ir/B co-doping in pristine SWCNT significantly enhanced the H2 adsorption capacity of the SWCNT. Furthermore, an increase in temperature decrease the performance ability of the co-doped SWCNT, negative adsorptions intensities were recorded by temperature increase by 650, 700 and 750 0C, this can be termed as exothermic adsorption. Therefore it can be demonstrated that H2 by co-doped SWCNT undergoes endothermic adsorption under ambient temperature and shows exothermic adsorption under higher temperatures.
References
Yahaya S. I., Abdussalam B. S., Chifu E. N., Abdullahi L., Razif R., Ismail I. I. and Mayeen U. K. (2023). DFT studies of structural, electronic and optical properties of (5, 5) armchair magnesium oxide nanotubes (MgONTs). Physica E: Low-dimensional Systems and Nanostructures, 149, 115657. doi:https://doi.org/10.1016/j.physe.2023.115657
Balarabe A. S., Itas Y. S., Ebene C.E. and Lawal A. (2023). DFT studies of structural, electronic and optical properties of (5, 5) armchair magnesium oxide nanotubes (MgONTs). https://doi.org/10.1016/j.physe.2023.115657, 115657. doi:https://doi.org/10.1016/j.physe.2023.115657
Budyka M. F., Zyubina T.S., Ryabenko A.G., Lin S.H., Mebel A.M. . (2005). Bond lengths and diameters of armchair single wall carbon nanotubes. Chemical Physics Letters, 407(4), 266-271. doi:10.1016/j.cplett.2005.03.088
Ferdaus A. J., Mayeen U. K., Mahadi H. M., Himon T., Fazle R., Nissren T., Abdelmoneim S., Yahaya S. I., and Hamid O. (2022). Cancerous and Non-Cancerous Brain MRI Classification Method Based on Convolutional Neural Network and Log-Polar Transformation. Healthcare, 10, 1801. doi:https://doi.org/10.3390/healthcare10091801
Florinda M., Carlos F., Miroslava S. and Nídia C. (2019). Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies, 12(6), 964. doi:https://doi.org/10.3390/en12060964
Ignatchenko V. A. and Tsikalov D. S. (2017). Local Density of States in One-dimensional Photonic Crystals and Sinusoidal Superlattices. Physics Procedia, 86, 113-116. doi:https://doi.org/10.1016/j.phpro.2017.01.030
Isabel S., Paula F. and Luc H. (2018). Energy and environmental challenges: bringing together economics and engineering (ICEE’17). Environment, Development and Sustainability, 20, 1-5. doi:https://doi.org/10.1007/s10668-018-0268-y
Itas Y. S., Abdussalam B. S., Aminu S. Y., Amina M. D. and Razif R. (2022). Ab’initio studies of the structural and electronic properties for single-walled armchair MgONT, SiCNTs and ZnONTs for next generations’ optoelectronics. Gadau Journal of Pure and Allied Sciences, 1(2), 160-165. doi:https://doi.org/10.54117/gjpas.v1i2.42
Itas Y. S., Abdussalam B. S., Chifu E. N., Abdullahi L., Razif R. and Mayeen U. K. (2022). Computational Studies of the Excitonic and Optical Properties of Armchair SWCNT and SWBNNT for Optoelectronics Applications. Crystals, 12(6). doi: https://doi.org/10.3390/cryst12060870
Itas Y. S., Abdussalam B. S., Chifu E. N., Abdullahi L., Razif R. and Mayeen U. K. (2022). The Exchange-Correlation Effects on the Electronic Bands of Hybrid Armchair Single-Walled Carbon Boron Nitride Nanostructure. Crystals, 12(3), 394. doi:https://doi.org/10.3390/cryst12030394
Itas Y. S., Baballe A., Amina M. D. and Yahaya S. A. (2020). Analysis of different welding speeds and the micro structure on the welded joints of silicon steel pipe. IOP Conference Series: Materials Science and Engineering, 932, 012123.
Itas Y. S., Tasiu Z. and Chifu E. N. (2020). Carbon Nanotubes: A Review of Synthesis and Characterization Methods/Techniques. International jornal of science and technoledge, 8(2), 43-50. doi:10.24940/theijst/2020/v8/i2/ST2002-020
Itas Y. S., Tasiu Z., Chifu E. N. and Mayeen U. K. (2021). Synthesis of Thermally Stable h-BN-CNT Hetero-Structures via Microwave Heating of Ethylene under Nickel, Iron, and Silver Catalysts. Crystals, 11(9). doi:https://doi.org/10.3390/cryst11091097
Itas Y.S., Balarabe A. S., Chifu E. N., Razif R. and Mayeen U K. (2022). Effects of oxygen absorption on the electronic and optical properties of armchair and zigzag Silicon Carbide Nanotubes (SiCNTs). Physica Scripta, 98(1), 015824.
Manoj R. K., Sandan K. S., Kumar B. V. M, and Debrupa L. (2015). Effects of carbon nanotube aspect ratio on strengthening and tribological behavior of ultra high molecular weight polyethylene composite. Composites Part A: Applied Science and Manufacturing, 72, 62-72. doi:https://doi.org/10.1016/j.compositesa.2015.05.007
Miklos C., Jotheeswari K., Alain G., Bo Y., Samuel G., Robert B. M., George A. O. (2016). Iridium-Catalyzed Continuous Hydrogen Generation from Formic Acid and Its Subsequent Utilization in a Fuel Cell: Toward a Carbon Neutral Chemical Energy Storage. ACS Catal, 6(11), 7475–7484. doi:https://doi.org/10.1021/acscatal.6b01605
Pedro J. M., Arturo J. V., José A. C., and Alicia C. (2021). Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels, 35(20), 16403–16415. doi:https://doi.org/10.1021/acs.energyfuels.1c02501
Renáta O and Andrej O. (2011). Recent applications of carbon nanotubes in hydrogen production and storage. Fuel, 90(11), 3123-3140. doi:10.1016/j.fuel.2011.06.051
Sachs B., Wehling T.O., Lichtenstein A. I. and Katsnelson M. I. (2011). Theory of Doping: Monovalent Adsorbates. doi:10.5772/15278
Sarah J., Simon E., Davor C., Jeremy J. B., and Michael D. V. (2021). Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes. ACS Appl. Nano Mater., 4(6), 6299–6305. doi:https://doi.org/10.1021/acsanm.1c01157
Shuangsheng X., Yang J., Wenjing L., Shuolei D., Yuanzhe W., Sunrui L., Rongna C., Li H., Zhengguang Z., and Faming G. (2021). P/N Co-doped Carbon Nanotubes with Dominated Capacity-controlled Absorption Effect Enabling Superior Potassium Storage. ChemElectroChem, 8(12), 3767-3776. doi:https://doi.org/10.1002/celc.202100664
Véronique D., Maxime P., Francesco C. and Hervé J. (2020). Energy and Economic Costs of Chemical Storage. Frontiers in Mechanical Engineering, 6(21). doi:10.3389/fmech.2020.00021
Xiaohan . (2022). Photocatalytic hydrogen production and storage in carbon nanotubes: a first-principles study. RSC Adv., 12(27), 17029–17035. doi:0.1039/d2ra02349k
Yang-huan Z., Zhi-chao J., Ze-ming Y., Tai Y., Yan Q., and Dong-liang Z. (2015). Development and Application of Hydrogen Storage. Journal of Iron and Steel Research, International, 22(9), 757-770. doi:https://doi.org/10.1016/S1006-706X(15)30069-8
Zhiyuan Y., Shuangying L., Neng W., Shan L., Haiyun S,. and Hong Y. (2017). Effect of metal adatoms on hydrogen adsorption properties of phosphorene. Materials Research Express, 4(4). doi:10.1088/2053-1591/aa6ac0/pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gadau Journal of Pure and Allied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.