Preparation and Characterization of Cellulose Based Superabsorbent Hydrogel from Rice Husk Cross-Linked With Ethane-1, 2-Diamine Using a Microwave
DOI:
https://doi.org/10.54117/gjpas.v3i2.140Keywords:
Cellulose, Superabsorbent hydrogel, Crosslinking, Microwave irradiation, DroughtAbstract
Superabsorbent hydrogels are being increasingly used as soil conditioners to enhance soil water retention, reduce the rate of irrigation and improve plant growth during drought. In the present work, superabsorbent hydrogel was prepared from cellulose based material with ethylenediamine as the crosslinking agent and evaluates it impact as water reservoir on maize growing in greenhouse. The cellulose isolated from rice husk, which has a basis to modify and obtain carboxymethylcellulose (CMC) using sodium hydroxide (NaOH) and monochloroacetic acid (MCA). The superabsorbent hydrogel was characterized by fourier transform infrared (FTIR) and x-ray diffraction (XRD). The percentage swelling attained by optimum conditions of time, power and amount of cross-linker required for the production of most desirable, stable and high water absorptivity were investigated, the optimum swelling capacity was found to be 1175%. The control pot (no superabsorbent hydrogels) revealed a significant difference in plant growth parameter and growth yield parameters compared to the pots treated with superabsorbent hydrogels. Increase in hydrogel dose significantly affects the growth and yield parameter of the maize. The optimum were recorded at 5grams for the superabsorbent hydrogels.
References
Abdulhameed A., Mbuvi H. M., Changamu E. O., Maingi F. M. (2019). Microwave synthesis of carboxymethylcellulose (CMC) from rice husk. IOSR journal of applied chemistry, 12(12): 33-42.
Adinugraha M. P., Marseno D. W., Hayadi A. (2005). Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydrate Polymers, 62: 164-169.
Al-Harbi A. R., Al-Omran A. M., Shalaby A. A., and Choudhary M. I. (1999). Efficacy of a hydrophilic polymer declines with time in greenhouse experiments. Horticulture Science, 34(2): 223–224.
AlizadehAsl S., Mousavi M., Labbafi M. (2017). Synthesis and characterization of carboxymethyl cellulose from sugarcane bagasse. Journal of Food Process Technology, 8: 687-694.
Anupama M. C. Singh R. Kumar., and Parmar B. S. (2007). Performance of a new superabsorbent polymer on seedling and post planting growth and Water use pattern of chrysanthemum grown under controlled environment. Acta Horticulturae, 742:43-49
Arslan N. (2007) Flow properties of cellulose and carboxymethylcellulose from orange peel. Journal Food Engineering, 81: 187–199.
Bakravi A., Ahamadian Y., Hashemi H.,
Namazi H. (2018). Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Advanced polymer technology, 1-11.
Begna S. H., Hamilton R. I., Dwyer L. M., Stewart D. W., Cloutier D., Assemat L., Foroutan-pour K., and Smith D. L. (2001). Morphology and yield response to weed pressure by corn hybrids differing in canopy architecture. European Journal of Agronomy, 14(4): 293-302
Bennour S and Louzri F. (2014). Study of Swelling Properties and Thermal Behavior of Poly(N,N-Dimethylacrylamide-co-Maleic Acid) Based Hydrogels. Advances in Chemistry, Volume 2014, Article ID 147398, 10 pages.
Bono A., Ying P. H., Yan F.Y. (2009). Synthesis and characterization of carboxymethyl cellulose from palm kernel cake. Advanced Natural Applied Science, 3: 5–11.
Costa-Ju´nior ES, Barbosa-Stancioli EF, Mansur AA, Vasconcelos WL, Mansur HS. (2009). Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydrate Polymers, 76(3): 472–81.
Ekezie F. C., Sun D., Han Z., Chang J. (2017). Microwave-assited food processing technologies for enhancing product quality and process efficiency: A review of recent development. Trend in food science and techonology, 67: 58-69.
Gupta V. N., Shivakumar H. G.. (2012). Investigation of swelling behavior and mechanical properties of a ph-sensitive superporous hydrogel composite. Journal of Pharmacutical Resources, 11(2): 481–493.
Hacker M. C, Mikos A. G. (2011). Synthetic polymers, in: A.A.L.A.T. Nerem (Ed.), Principles of Regenerative Medicine, 2nd edition, Academic Press, San Diego, 2011, Chapter 33, pp. 587–622.
Haleem N., Arshad M., Shahid M., Tahir M. A. (2014). Synthesis of carboxymethylcellulose from waste of cotton ginning industry. Carbohydrate Polymer, 113: 249–255.
Hossain M. S. (2009). Effect of deficit irrigation on yield and water productivity of maize. M. S Thesis (Agric. Eng.), Department of Irrigation and Water Management. pp. 26-38.
Khan F., Tare R., Richard O., Oreffo R., and Bradley M. (2009). Versatile biocompatible polymer hydrogel: scaffolds for cell growth. Angewandte Chemie International Edition, 48(5): 978-982.
Khadem S.A., Galavi M., Ramrodi M., Mousavi S. R., Rousta M. J., and RezvaniMoghadam P. (2010). Effect of animal manure and superabsorbent polymer on corn leaf relative water content, cellmembrane stability and leaf chlorophyll content under dry condition. Australian Journal of Crop Science, 4(1): 642-647.
Kondo T. (1997). The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose, 4(4), 281–292.
Li J., Li L., Zhang B., Yu M., Ma H., Zhang J., Zhang C., Li J. (2014). Synthesis of few-layer reduced graphene oxide for lithium-ion battery electrode materials, Industrial Enginnering Chemical Research, 53: 13348–13355.
Li Y., Li G., Zou Y., Zhou Q., Lian X. (2014). Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose, 21: 301-309.
Luan V. H., Tien H. N., Hoa L. T., Hien N. T. M., Oh E. S., Chung J. S., Kim E. J., Choi W. M.,
Kong B. S., Hur S. H. (2013). Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. Journal of Material Chemistry, 1: 208–211.
Liliana N. T., Bradley G., Mutengwa C. (2019). Morphological response of maize to drought, heat and combined stresses at seedling stage. Journal of Biological Sciences, 19: 7-16.
Mahmoudian M., Ganji F. (2017). Vancomycin-loaded HPMC micro-particles embedded within injectable thermosensitive chitosan hydrogels. Progress Biomaterials, 6:49–56.
Michalek J., Hobzova R., Pradny M., Duskova M. (2010). Hydrogel contact lenses, in: R.M. Ottenbrite, K. Park, T. Okano (Edition), Biomedical Applications of Hydrogels Handbook, Springer, New York, NY, 2010, pp. 303–316.
Mishra R. K., Datt M., Pal K., Banthia A. K. (2008). Preparation and characterization of amidated pectin based. hydrogels for drug delivery system. Journal Material Science: Mater Med 19: 2275–2280.
Musa U. T., and Usman T. H. (2016). Leaf area determination for maize (Zea mays l), okra (Abelmoschus esculentus l) and cowpea (Vigna unguiculata l) crops using linear measurements. Journal of Biology, Agriculture and Healthcare, 6(4): 103-111.
Niazuddin M., Talukder M. S. U., Shirazi S. M., and Hye M. A. (2002). Response of maize to irrigation and nitrogenous fertilizer. Bangladesh Journal of Agricultural Science, 29(2): 283-289.
Nazarli H., Zardashti M. R., Darvishzadeh R., and Najafi S. (2010). The Effect of Water Stress and Polymer on Water Use Efficiency, Yield and Several Morphological Traits Of Sunflower Under Greenhouse Condition. Not Sci Biol. 2: 53-58.
Okamoto K., Wang H. Y., Ijyuin T., Fujiwara S., Tanaka K., Kita H. (1999). Pervaporation of aromatic/non-aromatic hydrocarbon mixtures through crosslinked membranes of polyimide with pendant phosphonate ester groups, Journal of Membrane Science 157: 97–105.
Palamae S., Dechatiwongse P., Choorit W., Chisti Y., Prasertsan P. (2017). Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydrate Polymer, 155: 491–497.
Park K. (1997). In Controlled Release: Challenges and Strategies, American Chemical Society, Washington, DC.
Pereira A.G. B., Martins A. F., Paulino A. T., Fajardo A. R., Guilherme M. R., Faria M.G. I., Linde G. A., Rubira A. F., and Muniz E.C. (2017). Recent advances in designing hydrogels from chitin and chitin-derivatives and their impact on environment and agriculture. Rev. Virtual Quim, 9(1): 370-386
Pushpamalar V., Langford S. J., Ahmad M., Lim Y. Y. (2006). Optimization of reaction conditions for preparing carboxymethylcellulose from sago waste. Carbohydrate Polymers, 64(2): 312–318.
Putri D. A., Kurniyati Z. (2016). Effect of Sodium Chloroacetate towards the Synthesis of CMC (Carboxymethyl Cellulose) from Durian (Durio zibethinus) peel Cellulose. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 3(3): 28-32.
Rachtanapun P., Eitssayeam S., Pengpat K. (2010). Study of carboxymethyl cellulose from papaya peels binder in ceramics. Advanced Materials Research, 93(94): 17-21
Rachtanapun P., Kumthai S., Mulkarat N., Pintajam N., Suriyatem R. (2015). Value added of mulberry paper waste by carboxymethylation for preparation a packaging film. Materials Science and Engineering, 87: 1-7.
Rachtanapun P., Luangkamin S., Tanprasert K., Suriyatem R. (2012). Carboxymethylcellulose film from durian rind, LWT - Food Science and Technology. 48: 52-58.
Raju K. M., Raju M. P., and Mohan Y. M. (2003). Synthesis of superabsorbent co-polymers as water manageable materials. Polymer Internationals, 52: 768-772.
Sendur Kumaran, S., Natarajan S., Muthvel I. and Sathiayamurthy V. A. (2001). Efficacy of graded doses of polymers on processing quality of tomato cv. CO3. Journal of Madras Agriculture, 88 (4-6): 298-299.
Sorber J., Steiner G., Schulz V., Guenther M., Gerlach G., and Salzer R. (2008). Hydrogel-based piezoresistive pH sensors: Investigations using FTIR attenuated total reflection spectroscopic imaging. Analytical Chemistry, 80(8): 2957-2962.
Sunardi J., Tanabe F., Ishiguri J., Ohshima K., K Iizuka., Yokota S. (2016). Changes in lignocellulolytic enzyme activity during the degradation of Picea jezoensis wood by the white-rot fungus Porodaedalea pini. International Biodeterioration and Biodegradation, 110: 108-112.
Sutiya B., Istikowati W. T., Rahmadi A., Sunardi J. (2012). Kandungu kimia dan sifat alang-alang (Imperata cylndrica) sebagai gambaran bahan baku pulp dan kertas. Bioscientiae, 9(1): 8-19.
Togrul H., Arslan N. (2003). Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behavior of carboxymethyl cellulose. Carbohydrate Polymers, 54: 73-82.
U.S. Environmental Protection Agency (U.S. EPA) (1994). Integrated Risk Information System (IRIS) Online. Coversheet for Acrylamide. In: Office of Health and Environmental Assessment, U.S. EPA, Cincinnati.
Vanherck K., Cano-Odena A., Koeckelberghs G., Dedroog T., Vankelecom I. (2010). A simplified diamine crosslinking method for PI nanofiltration membranes. Journal of Membrane Science, 353: 135–143.
Varaprasad K., Mohan Y. M., Ravindra S., Reddy N. N., Vimala K., Monika K., Sreedhar B., and Raju K. M. (2010). Hydrogel-silver nanoparticle composites: A new generation of antimicrobials. Journal Applied Polymer Science, 115(2): 1199-1207.
Viera R. G., Filho G. R., Assuncao R. M. N., Meireles C. S., Vieira J. G., Oliveira G. S. (2007). Synthesis and characterization methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers, 67: 182-189.
Wang L., Zhang J. P., and Wang A. Q. (2008). Removal of methylene blue from aqueous solution using chitosan-g-poly (acrylic acid)/ montmorillonite superadsorbent nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1): 47-53.
Wingerson A., Richard C. (2002). Method of treating lignocellulosic biomass to produce cellulose, http://www.patentstorm.us/patents/6419788-description.html, US. Patent Issued on July 16.
Wu D., Wang T., Lu B.; Xu X., Cheng S., and Jiang X. (2008). Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir, 24(18): 10306-12.
Xu Y., Salmi J., Kloser E., Perrin F., Grosse S., Denault J. (2013). Feasibility of nanocrystalline cellulose production by endoglucanase treatment of natural bast fibers.Indutrial Crops Production, 51: 381-384.
Yang Q., Chung T. S., Xiao Y. C., Wang K. Y. (2007). The development of chemically modified P84Co-polyimide membranes as supported liquid membrane matrix for Cu(II) removal with prolonged stability, Chemical Engineering Science, 62: 1721–1729.
Yang X., Chen X., Ge Q., Li B., Tong Y., Zhang A., Li Z., Kuang T. and Lu C. (2006). Tolerance of photosynthesis to photo-inhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Science, 171(22): 389-397.
Yao X., Zhu Y., Tian Y., Feng W., and Cao W. (2010). Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. International Journal of Applied Earth Observation and Geoinformation, 12: 89-100.
Yazdani F., Allahdadi I., and Akbari G. A. (2007). Impact of superabsorbent polymer on yield and growth analysis of soybean (glycine max L.) under drought stress condition. Pakistan Journal of Biological Science, 10(1): 4190-4196
Yeasmin M. S., Mondal M. I. H. (2015). Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. International Journal of Biological Macromolecules, 80: 725-731.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gadau Journal of Pure and Allied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.