Effect of Curcuma longa Supplement on Cognitive Performance in Swiss Albino Mice
DOI:
https://doi.org/10.54117/gjpas.v3i1.125Keywords:
Curcuma longa, dementia, spatial working memory, long-term memoryAbstract
Dementia is an age-related mental disorder and a characteristic symptom of various neurodegenerative disorders. Hyperglycemia affects areas of the brain crucial for learning and memory processes, potentially leading to cognitive impairments in individuals with diabetes. Curcuma longa (C. longa) contains many pharmacological and chemically important compounds with many beneficial effects. This study aimed to evaluate the effect of Curcuma longa on cognitive function in Swiss albino mice. A total of sixteen (16) mice of both sexes weighing between 24 – 30 grams were used for the study. The mice were divided into four groups of four mice each (N=4). Group I served as control and received 10 ml/kg distilled water; groups II, III and IV were given 5%, 10% and 20 % of Curcuma longa for 14 days respectively. Y maze and novel object recognition task were used to assess spatial working, long-term and recognition memories respectively. We observed that the 5% C. longa (77.60 ± 10.15%) group showed significant (p < 0.05) improvement in percentage alternation compared to the control group (64.40 ± 5.99%). We also found out that the 5% C. longa supplemented group showed a significant (p < 0.05) increase in both long-term memory (-14.08 ± 3.26) and discriminative index (-0.26 ± 0.07) when compared to control group (-31.55 ± 2.65) and (-0.33 ± 0.07) respectively. Thus, C. longa supplement at 5% improves spatial working memory, long-term memory and discriminative index of Swiss albino mice.
References
Ainsworth, S. and Lowe, R. (2012). Representational Learning. In N. M. Seel (Ed.), Encyclopedia of the Sciences of Learning (pp. 2832–2835). Springer US. https://doi.org/10.1007/978-1-4419-1428-6_524
Anand, K. S. and Dhikav, V. (2012). Hippocampus in health and disease: An overview. Annals of Indian Academy of Neurology, 15(4), 239–246. https://doi.org/10.4103/0972-2327.104323
Antunes, M. and Biala, G. (2012). The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cognitive Processing, 13(2), 93–110. https://doi.org/10.1007/s10339-011-0430-z
Baxter, M. G. (2010). “I’ve seen it all before”: Explaining age-related impairments in object recognition. Theoretical comment on Burke et al. (2010). Behavioral Neuroscience, 124(5), 706–709. https://doi.org/10.1037/a0021029
Beach, E. F. and Turner, J. J. (1958). An enzymatic method for glucose determination in body fluids. Clinical Chemistry, 4(6), 462–475.
Bernecker, S. (2009). 46 Personal Identity and Memory. In Memory: A Philosophical Study. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199577569.003.0003
Burke, S. N., Wallace, J. L., Nematollahi, S., Uprety, A. R. and Barnes, C. A. (2010). Pattern separation deficits may contribute to age-associated recognition impairments. Behavioral Neuroscience, 124(5), 559–573. https://doi.org/10.1037/a0020893
Camina, E. and Güell, F. (2017). The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00438
Čapek, J. and Loidolt, S. (2021). Phenomenological approaches to personal identity. Phenomenology and the Cognitive Sciences, 20(2), 217–234. https://doi.org/10.1007/s11097-020-09716-9
Chuengsamarn, S., Rattanamongkolgul, S., Luechapudiporn, R., Phisalaphong, C. and Jirawatnotai, S. (2012). Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 35(11), 2121–2127. https://doi.org/10.2337/dc12-0116
Feinkohl, I., Price, J. F., Strachan, M. W. J. and Frier, B. M. (2015). The impact of diabetes on cognitive decline: Potential vascular, metabolic, and psychosocial risk factors. Alzheimer’s Research and Therapy, 7(1), 46. https://doi.org/10.1186/s13195-015-0130-5.
Flores-Gómez, A. A., de Jesús Gomez-Villalobos, M. and Flores, G. (2019). Consequences of diabetes mellitus on neuronal connectivity in limbic regions. Synapse (New York, N.Y.), 73(3), e22082. https://doi.org/10.1002/syn.22082.
Fluttert, M., Dalm, S. and Oitzl, M. S. (2000). A refined method for sequential blood sampling by tail incision in rats. Laboratory Animals, 34(4), 372–378. https://doi.org/10.1258/002367700780387714.
Fuloria, S., Mehta, J., Chandel, A., Sekar, M., Rani, N. N. I. M., Begum, M. Y., Subramaniyan, V., Chidambaram, K., Thangavelu, L., Nordin, R., Wu, Y. S., Sathasivam, K. V, Lum, P. T., Meenakshi, D. U., Kumarasamy, V., Azad, A. K. and Fuloria, N. K. (2022). A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.820806
Garkuwa, U. A, Alhassan, A. W. and Tanko, Y. (2017). Effect of Curcumin on Blood Glucose Level and Some Neurobehavioral Responses in Alloxan-induced Diabetic Swiss Albino Mice. Journal of Advances in Medical and Pharmaceutical Sciences, 14(1), 1–7. https://doi.org/10.9734/JAMPS/2017/34323
Garkuwa, U. A., Ibrahim, B., Balanmalam, A., Muhammad, S. M., Muazu, M., Garkuwa, H. and Yakubu, A. V. (2021). Curcuma. longa supplement increases anxiety-like behavior and blood glucose levels in Swiss albino mice. Neuroscience Research Notes. https://api.semanticscholar.org/CorpusID:233910614
Ghadami, M. R., Pourmotab, A. and Khademi, N. (2012). The protective effect of curcumin on scopolamine-induced spatial learning and memory deficits in rats. Physiology and Pharmacology, 12(4), 287–295. https://api.semanticscholar.org/CorpusID:145758522
Ghorbani, Z., Hekmatdoost, A. and Mirmiran, P. (2014). Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principal constituent curcumin. International Journal of Endocrinology and Metabolism, 12(4), e18081. https://doi.org/10.5812/ijem.18081.
Gupta, M., Pandey, S., Rumman, M., Singh, B. and Mahdi, A. A. (2023). Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neuroscience Reports, 14, 57–63. https://doi.org/10.1016/j.ibneur.2022.12.006
Hughes, R. N. (2004). The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neuroscience and Biobehavioral Reviews, 28(5), 497–505. https://doi.org/10.1016/j.neubiorev.2004.06.006.
Ji, B., Han, Y., Liu, Q., Liu, X., Yang, F., Zhou, R., Lian, Q., Cao, H. and Li, J. (2014). Curcumin improves the impaired working memory in cerebral ischemia-reperfusion rats by inhibiting proinflammatory cytokines. National Medical Journal of China, 94(13), 1029–1033. https://doi.org/10.3760/cma.j.issn.0376-2491.2014.13.020
Kang, Q. and Yang, C. (2020). Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biology, 37, 101799. https://doi.org/10.1016/j.redox.2020.101799
Li, M., Li, Y., Zhao, K., Tan, X., Chen, Y., Qin, C., Qiu, S. and Liang, Y. (2023). Changes in the structure, perfusion, and function of the hippocampus in type 2 diabetes mellitus. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.1070911.
Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., Huang, L. and Liu, Y. (2023). Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy, 8(1), 152. https://doi.org/10.1038/s41392-023-01400-z.
Marton, L. T., Pescinini-e-Salzedas, L. M., Camargo, M. E. C., Barbalho, S. M., Haber, J. F. dos S., Sinatora, R. V., Detregiachi, C. R. P., Girio, R. J. S., Buchaim, D. V. and Cincotto dos Santos Bueno, P. (2021). The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Frontiers in Endocrinology, 12. https://doi.org/10.3389/fendo.2021.669448.
Ortiz, G. G., Huerta, M., González-Usigli, H. A., Torres-Sánchez, E. D., Delgado-Lara, D. L., Pacheco-Moisés, F. P., Mireles-Ramírez, M. A., Torres-Mendoza, B. M., Moreno-Cih, R. I. and Velázquez-
Brizuela, I. E. (2022). Cognitive disorder and dementia in type 2 diabetes mellitus. World Journal of Diabetes, 13(4), 319–337. https://doi.org/10.4239/wjd.v13.i4.319.
Pathomwichaiwat, T., Jinatongthai, P., Prommasut, N., Ampornwong, K., Rattanavipanon, W.,
Nathisuwan, S. and Thakkinstian, A. (2023). Effects of turmeric (Curcuma. longa) supplementation on glucose metabolism in diabetes mellitus and metabolic syndrome: An umbrella review and updated meta-analysis. PloS One, 18(7), e0288997. https://doi.org/10.1371/journal.pone.0288997.
Pivari, F., Mingione, A., Brasacchio, C. and Soldati, L. (2019). Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients, 11(8). https://doi.org/10.3390/nu11081837.
Rivera-Mancía, S., Trujillo, J. and Chaverri, J. P. (2018). Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies. Journal of Nutrition and Intermediary Metabolism, 14, 29–41. https://doi.org/10.1016/j.jnim.2018.05.001
Saedi, E., Gheini, M. R., Faiz, F. and Arami, M. A. (2016). Diabetes mellitus and cognitive impairments. World Journal of Diabetes, 7(17), 412–422. https://doi.org/10.4239/wjd.v7.i17.412.
Sharifi-Rad, J., Rayess, Y. El, Rizk, A. A., Sadaka, C., Zgheib, R., Zam, W., Sestito, S., Rapposelli, S., Neffe-Skocińska, K., Zielińska, D., Salehi, B., Setzer, W. N., Dosoky, N. S., Taheri, Y., El Beyrouthy,
M., Martorell, M., Ostrander, E. A., Suleria, H. A. R., Cho, W. C., … Martins, N. (2020). Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. In Frontiers in Pharmacology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fphar.2020.01021.
Shetty, A. K. (2014). Hippocampal injury-induced cognitive and mood dysfunction, altered neurogenesis, and epilepsy: Can early neural stem cell grafting intervention provide protection? Epilepsy and Behavior : EandB, 38, 117–124. https://doi.org/10.1016/j.yebeh.2013.12.001
Sun, C., Li, X., Liu, L., Canet, M. J., Guan, Y., Fan, Y. and Zhou, Y. (2016). Effect of fasting time on measuring mouse blood glucose level. International Journal of Clinical and Experimental Medicine, 9(2), 4186–4189. https://api.semanticscholar.org/CorpusID:42434051.
Tyng, C. M., Amin, H. U., Saad, M. N. M. and Malik, A. S. (2017). The Influences of Emotion on Learning and Memory. Frontiers in Psychology, 8, 1454. https://doi.org/10.3389/fpsyg.2017.01454.
Voss, J. L., Bridge, D. J., Cohen, N. J. and Walker, J. A. (2017). A Closer Look at the Hippocampus and Memory. Trends in Cognitive Sciences, 21(8), 577–588. https://doi.org/10.1016/j.tics.2017.05.008.
Zhang, D.-W., Fu, M., Gao, S.-H. and Liu, J.-L. (2013). Curcumin and diabetes: A systematic review. Evidence-Based Complementary and Alternative Medicine : eCAM, 2013, 636053. https://doi.org/10.1155/2013/636053.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gadau Journal of Pure and Allied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.