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1.0 Introduction

1.1 Historical remarks

The concept of fuzzy set was introduction in (Zadeh,
1965). Since then numerous works by researchers have
been ongoing in various areas of abstract algebra and
related fields in the framework of fuzzy setting.
Notably, this concept was quickly adapted by
(Goguen, 1967), who introduced the notion of L-fuzzy
set. Sanchez (1976) and (Brown, 1971), then
generalized the concept of fuzzy sets, in which case the
unit interval on the real line used by (Zadeh, 1965) was
replace by a suitable partially ordered set (lattice) as
the codomain of the fuzzy membership function.
Fuzzy groups and fuzzy semigroups as related concept
were introduced and investigation early in the
beginning of fuzzy era. The first appearance of fuzzy
group was by ( Rosenfeld, 1971) . Thereafter, there
were many other papers, see the monograph, (
Mordeson et al., 2005 ), and references cited there.
For fuzzy semigroups, see monograph, (Malik et al.,
2003) which gave a comprehensive overview of all the
results up to 2003. Among numerous results, we can
mention paper (Filep, 1992) where the structure of

fuzzy subgroups of a group was investigated, paper
(Wen-Xiang and De-Gang, (1994)) where it was
shown that a fuzzy subgroupoid of a group need not be
a fuzzy group.

In this research the topic investigated is some algebraic
aspects of Q-valued algebraic structures, with focus on
groups. Q is a complete lattice.

Our research originates in fuzzy structures and in Q-
sets. Q-sets, as an intention for modeling intuitionistic
logic, appeared 1979, in the paper (Fourman and Scott,
1979). An Q-set is a nonempty set A equipped with an
Q-valued equality E, with truth values in a complete
Heyting algebra Q. E is considered to be a symmetric
and transitive function from A2 to Q. Both theories are
well related in their basic ideals since they both deal
the notion of belonging in set-theoretic and logical
sense. We may also quickly mention that Q-set in its
interpretation is not totally equivalent to that of fuzzy.
In fuzzy the notion of subset is generalized by a
function, while in Q-set approach we deal with the so-
called “partial elements”, where E is not reflexive. Q-
sets have been further applied to non-classical
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predicate logics, and also to theoretical foundations of
the fuzzy set theory (Gottwald, 2006), (Hohle, 2007).
Dealing with Q-structures we use Q-sets and in our
approach Q is a complete lattice (not necessarily a
Heyting algebra). The main reason for this
membership values structure is that it allows the use of
cut-sets as a tool appearing in the fuzzy set theory. In
this setting, main algebraic and set-theoretic notions
and their properties can be generalized from their
classical origin to the lattice-valued framework (Klir
and Yuan, 1995). So we deal also with lattice-valued
structures and Q-sets as basic objects . These were
developed within the fuzzy set theory

Since (Goguen, 1967) replaced the unit interval with a
complete lattice , this approach has been widely used
for dealing with algebraic topics (see Di Nola and
Gerla, 1987), then also (§e§elja and Tepavcevic, 1993,
1994)), and with the lattice-valued topology starting
with (Hohle and Sostak,1999) and many others. In the
recent decades, along with the development of the
fuzzy logic, a complete lattice as a membership (truth
values) structure is often replaced by a complete
residuated lattice (see e.g., (Bé&lohlavek, 2002)). But
then the cut structures do not keep algebraic properties
satisfied on the basic fuzzy structure.

As a generalization of the classical equality we use
lattice-valued equality. This was introduced into fuzzy
mathematics by Hohle in his paper (Hohle, 1988), and
then several authors have used it in the investigation
of fuzzy functions and fuzzy algebraic structures
notably among them are: (Demirci, 2003),
(Bélohlavek and Vychodil, 2006) and others.
Identities for lattice-valued structures with the fuzzy
equality used in this work were introduced in (Seselja
and Tepavéevié, 2009) and developed in
(Budimirovi¢ et al., 2012, 2013, 2014, 2016 ).
Recently, several applications of it have appeared in
publication (Edeghagba et al., 2017, 2019 ), (Bleblou
et al., 2018) and (Krapeza et al., 2019). Although
similar notion first appeared in (Bé&lohlavek and
Vychodil, 2006). In this framework, an identity holds
if the corresponding lattice-theoretic formula is
fulfilled. What is new in this approach is that an
identity may hold on a lattice-valued algebra, while the
underlying classical algebra does not satisfy the
analogue classical identity.

In (Seselja and Tepavéevi¢, 2019) the authors
introduced and investigated the notion of Q-group in
the language of Q-groupiod. In this case the basic
algebra is a groupoid with single binary operation. The
authors proved that this study of Q-groups can be
equivalent to that of Q-groups in the language of three
operation as presented in (Seelja and Tepavéevic,
2019). In a quick followup to the work presented in
(Seselja and Tepavéevic, 2019) the notion of subgroup
was introduced in (Edeghagba and Muhammad, 2022)
were it was investigated and showed that the lattice-
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valued identities which holds in an Q-group also hold
in the Q-subgroup and the notion of Q-centralizer, Q-
normalize and Q-center of an Q-subset of an Q-group
was introduced.

In the present work we investigate and proved that the
sets of Q-centralizers, Q-normalizers and Q-centers of
an Q-subset of an Q- group form Q-subgroup of the Q-
group , like in the classical group theory.

2.0 Preliminaries
In this section, we give some notations, definitions
and propositions which will be needed in this paper.

2.1 Algebras
G = (G,*) is an algebra in the language with a single
binary operation, called groupoid.
A neutralelement in a groupoid G = (G,*) isx € G,
such that forevery x e G, x xe = e *x = x.
A groupoid G = (G,*) is said to be a semigroup if it
fulfills the associative identity:
x*(y*z)= (x*y)*z.
A monoid, G is a semigroup with a neutral element.
For x € G its inverse denoted by x~ € G is referred
to as inverseelement, of x in a monoid G, such that
xxx l=x1xx=e.
The inverse of every element x € G is unique.
A group, G = (G,*) is a monoid in which every
element possesses an (unique) inverse.
The following formula defines a neutral element and
inverses:

A)(Vx)(x*xz=zxx=xANAy)(x*xy=y*xx =
z)): 1)

in addition to the associative identity. In universal
algebra a group can equivalently be defined as an
algebra with three operations, (G;*;x™;e) : binary
operation *, unary operation x~! and a nullary
operation, constant, e, so that the following identities
hold:

x*x(y*z) = (x*xy)*z 2
X*exx,e*xx~x; 3)
x*x tmex lxx=e: (4)

Observe that the only identity in the definition of a
group as a groupoid G = (G,*) is associativity.

In this language properties of the neutral element and
inverses, as a formula (1), contain existential
guantifiers. In the language with three operations, all
three formulas, (2, 3, 4), defining a group are
identities. Still, these notions describing the structure
of a group in different languages are equivalent, as
follows.
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Proposition 2.1 If G = (G,*) is a group as a groupoid
with the neutral element e and inverse x~* forx € G,
then (G;x;~1; e) is a group in the language with three
operations. Conversely, if (G;*; —1;e) is a group in
the corresponding language, then also the groupoid
G = (G,*) isagroup.

2.2 Q-valued functions and relations

An Q-valued function u on a nonempty set A4 is a
mapping w: A — Q, where (Q, <) is a complete lattice.
This notion can be related to fuzzy set on A. If u and v
are Q-valued functions on A, then v is said to be a
fuzzy subset of y, if forall x € A v(x) < u(x).

Forp € Q, a cut set or a p-cut of an Q-valued function
w: A — Qisasubset u, of A which is the inverse image
of the principal filter in Q, generated by p:

wp =11 @) = {x € X|u(x) = p}.

An Q-valued (binary) relation R on A is an Q-valued
function on A2, i.e., it is a mapping R: A% = Q.
R is symmetric if

R(x,y) =R(y,x) for all x,y € A4; (5)
R is transitive if

R(x,y) 2 R(x,zZ) AR(z,y) for all x,y,z€
A. (6)
Observe that an Q-valued symmetric and transitive
relation R on A fulfills the strictness property (see
(Hohle, 2007)):

R(x,y) = R(x,x) AR(y,y). (7)

Likewise we say an Q-valued symmetric and transitive
relation R on A satisfies the separation property if the
following holds:

R(x,y) =R(x,x) =R(y,x) # 0 implies x =
y.
Therefore, R is said to be separated if 8 holds.
We now consider the connection of the above notion
with Q-valued relations on Q-set.

Suppose u: A — Q is an Q-valued function on A and
R: A% > Q an Q-valued relation on A. If for all x,y €
A the following holds:

(8)

R(x,y) < p(x) Au(y). )

then we say that R is an Q-valued relation on p.
Next, we consider the notion of (weak) reflexiveness
of R. An Q-valued relation R on u: A — Q is said to be
reflexive on u or u-reflexive if

R (x,x) =p (x) for every x € A. (10)
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A symmetric and transitive Q-valued relation R on A4,
which is reflexive on w:A - Q is an Q-valued
equivalence on p.

Clearly, an Q-valued equivalence R on u fulfills the
strictness property (7).

Furthermore, if R is an Q-valued equivalence on g,
which is separated according to (8), then we say that R
is an Q-valued equality on u.

For an algebra A = (4,F), an Q-valued function
w:A — Qis said to be compatible over A if u is not
constantly equal to 0, and which fulfils the following:
For any operation f from F with arity greater than 0,
f:A" - A,n € N, forall a,, ..., a,, € A, we have

A @) < u(f(ay, -, an)), 11)
and for a nullary operation, ¢ € F,

p(e) = 1. (12)

Likewise, an Q-valued relation R:A4% — Q on an
algebra A = (4, F) is compatible with the operations
in F if the following two conditions holds: for every
n-ary operation f € F,forall a,, ...,a,, by, ..., b, € A4,
and for every constant (nullary operation) ¢ € F

A R(@b) S R(F(@y, @), f By e, b)) (13)
R(c,c) =1. (14)

2.3 Q-set

The following is defined in (Fourman and Scott, 1979)
and then adopted to a fuzzy framework in
(Budimirovi¢ et al., 2016 ).

An Q-set is a pair (4, E), where A is a nonempty set,
and E is a symmetric and transitive Q-valued relation
on A, which may fulfill the separation property (8) if
indicated. But we note that in this work the separation
property is needed for most of the result.
Consequently, for an Q-set (4, E), we denote by u the
Q-valued function on A, defined by

wu(x):=E(x,x). (15)

Then u is said to be determined by E. This enable us
in generalizing the notion of subset of an Q-set (4, E).
Clearly, by the strictness property (7), E is an Q-valued
relation on p, namely, it is an Q-valued equality on p.
That is why we say that in an Q-set (4,E), E is an Q-
valued equality.

Lemma 2.2 If (4,E) is an 02-set and p € 02, then the
cut E,, is an equivalence relation on the corresponding
cut uy, of .
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2.4 Q-algebra

Let A = (4, F) be an algebra and E: 4% - Q an Q-
valued equality on A, which is compatible with the
operations in F. Then we say that (A, E) is an Q-
algebra. Algebra A is the underlying algebra of
(A,E).

Proposition 2.3 (Budimirovi¢ etal., 2016) Let (A, E)
be an N2-algebra. Then the following hold: (i ) The
function w: A — Q determined by E (u(x) = E(x, x)
for all x € A), is compatible over A. (ii ) For every
p € Q, the cut u,, of u is a subalgebra of A, and (iii )
For every p € Q, the cut E, of E is a congruence
relation on .

2.5 Q-subalgebra of an Q-algebra

For reference on the results in this section see
(Edeghagba et al., 2017). Let (A, E) be an Q-algebra,
and (4,E;) an Q-subset of (4,E). Then E; is a
symmetric and transitive Q-relation on A, fulfilling for
allx,y e A

Ei(x,y) = E(x,y) NE1(x,x) ANEL(, ).

Let also E; be compatible with the operations in A.
Obviously, (A, E,) is an Q-algebra and we say that it
is an Q-subalgebra of the Q-algebra (A, E).

The following is obvious.

Proposition 2.4 If (A, E;) is an Q2-subalgebra of an
N-algebra (A,E), and p:A - Q is the 2-valued
function on A defined by p, (x): = E;(x, x), then y, is
compatible over A, i.e., it fulfills (11).

An Q-subalgebra (A, E,) of (A, E) fulfills all the
identities that the latter does, as follows.

Theorem 2.5 Let Let (A, E;) be an 2-subalgebra of
an 0-algebra (A, E). If (A, E) satisfies the set X of
identities, then also (A, E;) satisfies all the identities
inZX.

3.0 Q-groups and Q-subgroups

3.1 Q-group: as Q-groupoid 5

For reference on the results in this section see (Seselja
and Tepavcevié, 2019).

Remark 3.1 In both languages, the associative
property is equivalent to the fulfillment of the
corresponding identity in the framework of -
algebras:

1) Ap(y) Au(z) < E(x * (v * 2), (x * y) * 2),(16)

Let G=(G,E) be an Q-groupoid, where the
underlying algebra is a groupoid G = (G,*). Then G is
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a strict Q-group if it is associative in the sense of (16)
and the following hold:
There is e € G such that for every x € G

ux) <pu(e)ANE(exx,x) NE(x xe, x) a7
and

there is x' € G such that u(x) < u(x") AE(x *
x,e)NE(x *x,e) (18)

Proposition 3.2 Let G = (G, E) be an 2-groupoid
which is a strict 2-group, then the following hold: (i )
if e € G is a neutral element in G, then for all x € G
u(e) = u(x).

(ii ) A neutral element e is unique and this is also the
neutral element in the underlying groupoid (G,*).

Proposition 3.3 Let G = (G,E) be an 2-groupoid
which is a strict £2-group, then the following hold for
everyx € G: (i ) (x) = x. (ii ) u(x) = u(x"). (iii )
Inverse element x’ is unique.

The new result shows the equivalence of the two
approaches to Q-group.

Theorem 3.4 Let £ be a language with a binary
operation *, unary operation ~ and a nullary
operation e. If ((G,*,7,e),E) is an 2-group in this
language, then also ((G,*), E) is an £2-groupoid which
is a strict group. Conversely, if ((G,*),E) is an Q-
groupoid which is a strict group where e is a neutral
element, x~! is the inverse of x € G then ((G,*
,~,e),E)isan n-group in the language L.

3.2 Q-subgroup: as Q-subgroupoid
For reference on the results in this section see
(Edeghagba and Muhammad, 2022).

Proposition 3.5 Let G = (G, E) be a strict £2-group ,
where G = (G,*) is a classical groupoid and G =
(G,E) an Q-subgroupoid of G. Therefore, if § =
(G, E) is an 02-subgroup of G, then the following holds:
Thereis e € G such that for all x € G

A(x) < p(e) NE(x e, x) NE(e * x,x) (19)
thereisx' € G
Ax) < A NE(x *x',e) NE(x' * x,e) (20)

Definition 3.6 Let A = (G, E™) to be an 2-subset of G
The we have the following definitions

1) Let G = (G, E) be astrict Q-group , where G = (G,*
) is a classical groupoid and 4 = (G, EY) an Q-subset
of G . An element x € G is a centralizer of A if for
every a € A the following holds

ul(a) Ap(x) < E(xax’',a). (21)
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2) LetG = (G, E) beastrict Q-group , where G = (G,*
) is a classical groupoid and A = (G,E') be an Q-
subset of G . An element x € G is a normalizer of A if
for all a € A there exist b € A such that

ut(@) Apt(b) Ap(x) < E(xax’,b) (22)

3) Let G = (G, E) be astrict Q-group , where G = (G,*
) is a classical groupoid. An element x € G is at the
center of G if for all a € G the following holds

n(a) Ap(x) = E(xa, ax) (23)

Proposition 3.7 Let A = (G, E') be an 2-subset of the
(strict) 2-group G = (G, E). Then the following hold

i the neutral element of G centralizes A ii if x €G
centralizes A, then the inverse element of x € G

centralizes A iii if x,y € G centralizes A, then xy € G
centralizes A

Proposition 3.8 Let A = (G, E') be an 2-subset of the
(strict) 2-group G = (G, E). Then the following hold

i the neutral element of G normalizes A ii if x € G
normalizes A, then the inverse element of x € G

normalizes A iii if x,y € G normalizes A, then xy € G
normalizes A

Proposition 3.9 Let A = (G, EY) be an 2-subset of the
(strict) 2-group G = (G, E). Then the following hold

EV(x,y) =E"(,x) NEY(y,y) NE(x,Y)
fora,x,y €G
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i the neutral element of G is at the center of G ii if x €
G is at the center of G, then the inverse element of x €
G is at the center of G iii if x,y € G is at the center of
G, then xy € G is at the center of G.

4.0 Results

In subsection (3.2) Q-subgroup of an Q-group (as
presented in (Sedelja and Tepavéevi¢, 2019) was
investigated in the case where the underlying algebra
is an algebra with one operation. But our aim here is to
deal with particular kinds Q-subgroups of an Q-group
in the language of one operation, as was introduced in
(Edeghagba and Muhammad, 2022).

Let A = (G, EY) be an Q-subset of the (strict) Q-group

G = (G, E) and the Q-relation EV: G2 — Q be defined
by

EV(x,x) = E(xax',a) ANE*(a’,a") (24)
for which

EY(x,y) = E(x,y) NE'(a,a) (25)
fora,x,y €G.

We consider v to be Q-valued function on G which is
an Q-valued subset of the Q-valued function u.
Proposition 4.1 Let EY be a symmetry and transitive
N-relation on G as given by equation (24) above and
fulfilling EV < E. Then the following holds:

(26)

Proof. Clearly EV (x,y) < EY(x,x) AEY(y,y) AE(x,y). By (24), EV(x, x) = E(xax',a) A E}(d’,a’) and
EY(y,y) = E(vay',a) ANEY(d,a"), for x,y € G. Thus
EV(x,x) NEY(y,y) = E(xax’,a) NEY(a',a") ANE(yay',a) NE*(d',a") =
E(xax',a) NEY(a',a) NE(yay', a)

= EV(x,x) NEV(y,y) < E(xax',yay") ANE*(a’,a")

(Transitivity)

= EV(,x) AEY(Y,y) NE(x,y) < E(xax',yay") NE(x,y) AEY(d,a’) <
E(xax'x,yay'y) ANE'(a’,a’") = E(xae,yae) AE'(a’,a') (Inverse element in G)
= EV(x,x) AEY(y,y) NE(x,y) < E(xa,ya) AEY(d',a’") = E(xa, ya) A

El(ad,a) ANE(d,a")

(where p'(a’) < p(a)

= EV(x,x) AEY(v,y) ANE(x,vy) < E(xaa’,yaa") AE'(a’,a’) (compatibility)

= EY(x,x) NEY(y,y) NE(x,y) < E(xe,ye) ANEY(d',a") = E(x,y) AEY(d',a")
(a' inverse of a in G)

= EV(x,x) AEY(y,Y) NE(x,¥) < E(x,y) NEY(d',a") = E(x,y) AE*(d',a") A

E(a,a) = E(x,y) AEY(a,a)

(where p'(a) = p'(a")

= EY(,x) NEY(y,y) NE(x,y) < E(x,y) AE*(a,a) = E¥(x,y) (By (25))
> EY(,x) ANEY(y,y) NE(x,y) < EV(x,y).
Hence EY(x,y) = EV(x,x) AEV(y,y) A E(x,y) as required.

Clearly Proposition 4.1 shows that EV is a restriction
of E to the nonempty Q-subset v of u (where u is
determine by E). Therefore, the pair (G, E") is an Q-

set as presented in Proposition 4.1 and hence an Q-
subset of the Q-set (G, E).
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Corollary 4.2 Let A = (G, EY) be an £2-subset of the
N-set (G,E) and (G,EY) an f-subset of the 0-set
(G, E) as given by equation (24) above. Then

EY(x,x) AE'(a,a) < E(xax',a)
forx,a € G
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(@7)

Proof. Let x,a € G and by equation (24), EV(x,x) = E(xax’,a) AE*(a’,a’), thus
EV(x,x) = E(xax',a) AE*(a’,a")
= EV(x,x) ANEY(a,a) = E(xax’,a) AE'(a',a’) ANE'(a,a) < E(xax’,a)

AE(@,a")NE(a,a) < E(xax',a) NE(a'a,a’a)

(compatibility)

= EV(x,x) NE'(a,a) < E(xax’,a) NE(e,e) (a' inverse of a in G)
= EV(x,x) AE'(a,a) < E(xax’,a).
Hence EV(x,x) A E*(a, a) < E(xax', a) as required.
We understand that u': G — Q is an Q-valued function on G defined by u(x): = E*(x, x) and the Q-valued
function v: G — Q on G is defined by v(x): = E"(x, x). Hence we rewrite equation (27) as

v(x) Aul(a) < E(xax',a)

Remark 4.3 Observe that the 2-valued function v on
G which is an 2-valued subset of the £2-valued function
u fulfills equation (21), therefore the 2-set (G, EV) will
be referred to as an f-centralizer of the N-set A =
(G,EY).

Like in the crips classical group theory the set of
centralizers of a given subset of the a group forms a

(28)

subgroup of the group. Therefore, the next results
gives this analogy for an Q-group.

Proposition 4.4 Let A = (G, EY) be an 22-subset of the
N-set (G,E) and (G, E") an 2-centralizer of the 2-set
A= (G,EY). If EV is compatible with the operation
defined in the (strict) Q2-group G = (G, E), then
C5(A) = (G,EY) is an Q-subgroup of G = (G, E).

Proof. First we show the existence of inverse element for each element in C;(A). Let x,a € G, x be the inverse of x
inG = (G, E) and e the neutral element in G = (G, E) and by equation (24), E”(x, x) = E (xax’,a) A E'(d’,a") and
E¥(x',x") = E(x'ax,a) NE'(a',a"). If ¢ = E(x'ax,a) AE(a',a’) then E(x'ax,a) = q. Therefore, (x'ax,a) € E,

implying

[x,ax]Eq = [alg,
= [x]g,[alg, [x]e, = [alg,
= [x]g, = [a]g, [x]g,[alg,
= (x,a'xa) € E,
= E(x,a'xa) = q.
similarly, If ¢ = E(xax’,a) AE(a’,a’) then E (xax’, a) = q. Therefore, (xax’, a) € E, implying

I
[xax']g,

[a] Eq

= [x]g, [alg, [x']&, = [alg,
= [x]g, = [a]g, [*']g, [alg,
= (x',a'x'a) € E,
= E(x',a'x'a) = q.
Thus, EY(x,x) = E(xax’,a) ANE*(a’,a") = E(xax',a) AE*(a',a) ANEY(a,a) and EY(x',x") = E(x'ax,a) A

El(d',a") = E(x'ax,a) AEY(a’,a") A E'(a,a). Therefore

EV(x,x) NEV(x',x") = E(xax’,a) NE'(a',a) AEY(a,a) AE(x'ax,a) AEY(d,a")
AEY(a,a) = EY(d',a") NE(xax',a) NEY(a,a) NEY(d',a") NE(x'ax,a) AE'(a,a)
<E(d,a) ANE(xax',a) ANE'(a,a) NE(d',a") ANE(x'ax,a) AE(a,a)
= EV(x,x) NEV(x',x") < E(a'xax',a’'a) AE'(a,a) AE(a'x'ax,a’a) A E'(a,a)
(compatibility)
= EV(x,x) NEV(x',x") < E(a'xax’,e) ANE*(a,a) NE(a'x'ax,e) A E*(a,a)
(a’ inverse of a in G).
let g=p=EY(x,x)AEY(x,x") then E(a'xax’,e)AE'(a,a)AE(a'x'ax,e) AE(a,a) =p. Therefore,

(a'xax',e) € E, and (a'x'ax, e) € E, implying

[a’xax’]Ep = [e]E,,
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= [a']g, [x]e, [ale, [x']e, = [e]e,
= [alxa]Ep [x’]Ep = [elg,
= [x]g, [x]E, = €], (@ = p)
= (xx',e) € E,
= E(xx',e) = p.
and
[a,x,ax]Ep = [elg,
= [a']g, [x']g,[ale, [x]e, = [e]e,
= [a’x’a]Ep [x]g, = [elg,
= [x']g, [x]E, = €], (@ = p)
= (x'x,e) €E,
= E(x'x,e) = p.
Thus
EV(x,x) NEV(x",x") < E(xx',€) AE*(a,a) NE(x'x,e) ANE*(a,a)
= EV(x,x) NEV(x',x") NEY(x',x") < E(xx',e) NE'(a,a) AE(x'x, e)
ANEY(a,a) NEV (X, X))
= EY(x,x) < E(xx',e) NEY(a,a) NE(x'x,e) NEY(a,a) ANE” (X', x")
(where E¥(x',x") = E"(x,x))
= EV(x,x) < EV(xx',e) NEV(x'x,e) NEV(x', x") (by equation(25))
> v(x) < v()AEY(xx',e) NEY(x'x, e). (EV(x,x):=v(x) )

Hence v(x) < v(x') AEY(xx',e) AEV(x'x,e).
Next we show the existence of the the neutral element in C5(A). By equation (24), E¥ (x, x) = E(xax’,a) A E'(a’,a")
and EV(e,e) = E(eae’,a) NE'(d',a’). If ¢ = E(x'ax,a) AE(a’,a’) then E(x'ax, a) = q. Therefore, (x'ax, a) € E,
implying
[xax,]Eq = [a]Eq'
similarly, If ¢ = E(eae’,a) AE(a’,a’) then E(eae’, a) = q. Therefore, (eae’,a) € E, implying
[eael]Eq = [alg,.
Thus, EY(x,x) = E(xax’,a) AE*(a’,a’) = E(xax’,a) NE*(a’,a) ANE'(a,a) and EY(e,e) = E(eae’,a)A
El(d',a") = E(eae',a) ANE'(a’,a") A E'(a,a). Therefore,

EV(x,x) NE¥(e,e) = E(xax’,a) AE*(a',a’") AEY(a,a) AE(eae’,a) A

El(d',a") NEY(a,a) = E(xax',a) NE*(a',a’) NE*(a,a) AE*(a',a") A

E(eae’,a) NE'(a,a) < E(xax',a) NE(a',a) NE*(a,a) NE(a',a") A

E(eae’,a) NE'(a,a)
= EV(x,x) NEV(e,e) < E(xax'a’,aa’) NE*(a,a) AE(a'eae’,aa’) A E'(a, a)
(compatibility)
= EV(x,x) NEV(e,e) < E(xax'a’,e) NE(a,a) AE(d'eae’,e) AE(a,a)
(a' inverse of a in G)
= EV(x,x) NEV(e,e) < E(xax'a’,e) NE(x,x) AE*(a,a) NE(x,x) A
E(d'eae’,e) NE*(a,a) < E(xax'a'x,ex) AN E'(a,a) A E(xa'eae’, xe) AE (a,a)
(compatibility)
= EV(x,x) NEV(e,e) < E(xax'a'x,x) ANE'(a,a) A E(xad'eae’,x) A E*(a,a)
(e the neutral element in G)
let g=p=EY(x,x)AEY(e,e) then E(xax'a'x,x)AE'(a,a)AE(xa'eae’,x)ANE'(a,a)>p. Therefore,
(xax'a’x,x) € E, and (xa'eae’, x) € E, implying
ax'a'xlg, = [<lg,

= [xax’]Ep [a’]E,, [x]Ep = [x]Ep

= [alg,[a']g, [x]e, = [X]E, (@ =z p)
= [ad]g, [x]g, = [X]g,
= [e] Ep [x] B, = [x] Ep (Inverse element)

= [ex]g, = [x]g,
= (ex,x) € E,
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= E(ex,x) = p.
and
[xd'eac’]s, = [x]s,
= [x]g,[a']g, [eae’]s, = [x]g,
= [x]g,[a']g,lale, = [x]E, (@ = p)
= [x]g,[a'alg, = [x]g,
= [x]g,lelg, = [X]g, (Inverse element)

= [xe]g, = [x]g,
= (xe,x) €EE,
= E(xe,x) = p.

Thus
EV(x,x) NEY(e,e) < E'(ex,x) AE(a,a) AE*(xe,x) ANE(a,a)
= EV(x,x) NEV(e,e) NE'(e,e) < E(ex,x) AE*(a,a) A E(xe,x)
AEY(a,a) NEV(e, e)
= EV(x,x) < E(ex,x) NE'(a,a) AE(xe,x) NE*(a,a) ANE" (e, e)
(where EV(e,e) = E"(x,x))

= EV(x,x) < EV(ex,x) NE¥(xe,x) NE"V (e, e) (by equation(25))
=>v(x) <v(e) AEV(ex,x) A EY(xe, x). ( where EV(x,x):=v(x) )

Hence v(x) < v(e) A EV(ex,x) A EV(xe, x).
We have prove that C;(4) = (G, E) is an Q-subgroup of G = (G, E).

Let A = (G, E") be an Q-subset of the (strict) Q-group G = (G, E) and EV: G2 — Q be defined by

EV(x,x) = E(xax',b) NEX(a',a") ANEY(D',b") (29)
for which

EV(x,y) = E(x,y) AE*(a,a) AE*(b,b) (30)
fora,b,x,y €G

We consider v be Q-valued function on G which is an Q-valued subset of the Q-valued function u.

Proposition 4.5 Let EV be a symmetry and transitive 2 relation on G as given by equation 24 above and fulfilling
EV < E. Then the following holds:

EV(x,y) =E"(x,x) NEY(y,y) NE(x,Y) (31)

Proof. Clearly EV(x,y) < EV(x,x) AEV(y,y) AE(x,y). By equation (29) EV(x,x) = E(xax',b) AE1(a’,a") A
EY(b',b") and E¥(y,y) = E(yay',b) AEX(a’,a") NEX(D', D), for x,y € G. Thus
EV(x,x) NEY(y,y) = E(xax’,b) NE*(a’,a) NEX(D',b") AE(yay',b) A
El(a',a) NEY(b',b") = E(xax',b) NE*(d',a") AE*(a,a) AE(yay’,b) A
EX(b',b") A EX(b, b)
= EV(x,x) NEY(y,y) < E(xax',b) NE(yay',b) NE(a',a’) NE*(a,a) A
EX(b',b") NEY(b,b) < E(xax’,yay') NE(a',a") NEY(a,a) NEY(D',b") A
E'(b,b) (Transitivity)
> EY(,x)ANEY(Y,y) NE(x,y) < E(xax',yay") NE(x,y) NE(d',a") A
El(a,a) NEY(b',b) ANEY(b,b) < E(xax'x,yay'y) NE(a',a") AE*(a,a) A
EY(b',b"Y ANEY(D,b) (Compatibility)
= EY(x,x) NEY(y,¥) AE(x,y) < E(xae,yae) ANE(a',a’) AEY(a,a) A
EX(b',b") ANEX(b,b) (Inverse of element in G)
= EY(x,x) NEV(y,y) NE(x,y) < E(xa,ya) ANE(a',a") AE*(a,a) A
E'(b,b') A EX(b, b)
= EV(x,x) NEV(v,Y) NE(x,y) < E(xaa’,yaa") AE*(a,a) ANE*(b',b") A
EY(b,b) (compatibility)
= EV(x,x) NEV(y,y) AE(x,y) < E(xe,ye) ANE*(a,a) NE*(b,b) =
E(x,y) NEY(a,a) ANEY(b,b) (a' inverse of a in G)
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= EY(x,x) NEY(y,y) NE(x,¥) < E(x,y) AE'(a,a) NE*(b,b) =
EY(x,y) (By (30))
=>EV(x,x)ANEY(y,y) NE(x,y) < EY(x,y).
Hence EV(x,y) = EY(x,x) AEV(y,y) A E(x,y) as required.

Clearly Proposition 4.5 shows that EV is a restriction of E to the nonempty Q-subset v of u (where u is determine by
E). Therefore, the pair (G, EV) is an Q-set as presented in Proposition 4.5 and hence an Q-subset of the Q-set (G, E).

Corollary 4.6 Let A = (G,E*) be an Q2-subset of the 2-set (G, E) and (G, E") an £2-subset of the 2-set (G, E) as
given above. Then

EV(x,x) NE'(a,a) AEY(b,b) < E(xax', b) (32)
forx,a € G

Proof. Let x,a € G and by equation (29), E” (x, x) = E(xax',b) A E'(a’,a") A E* (b, b"), thus
EV(x,x) = E(xax',b) NEY(a',a") NEX(b', D)
= EV(x,x) ANE'(a,a) NEY(b,b) = E(xax',b) AE*(a’,a) AEX(D',b") AEY(a,a)
AEY(b,b) < E(xax',b) NE(a',a) NE(a,a) NE(b',b") NE(b,b) < E(xax’,a) A
E(ad'a,a’'a) NE(b'b,b'D) (compatibility)
= EY(x,x) ANE'(a,a) ANEY(b,b) < E(xax',b) NE(e,e) ANE(e,e)
(Inverse element in G)
= EV(x,x) AEY(a,a) AEY(b,b) < E(xax',b).
Hence EV(x,x) A E*(a,a) A E*(b, b) < E(xax',b) as required.

We understand that u: G — Q is an Q-valued function on G defined by u(x): = E*(x, x) and the Q-valued function
v:G — Qon G is defined by v(x): = E¥(x, x). Hence we rewrite equation (32) as

v(x) Aut(a) Aut(b) < E(xax',b)

Remark 4.7 Observe that the 2-valued function v on
G which is an 2-valued subset of the £2-valued function
u fulfills equation (21), therefore the 2-set (G, EV) will
be referred to as an £2-normalizer of the N-set A =

(33)

Proposition 4.8 Let A = (G, E') be an 2-subset of the
N-set (G,E) and (G, EY) an f2-normalizers of the Q-
set A = (G,EY). If EV is compatible with the operation

defined in the (strict) Q2-group G = (G, E), then

(G, El). — AN _ C =

Like in the crips classical group theory the set of Ng(4) = (G, E7) s an -subgroup of G = (G, E).
elements of a group that normalizes a given subset of

the a group forms a subgroup of the group. Therefore,

the next result gives this analogy for an Q-group.

Proof. First we show the existence of inverse element for each element in N;(A). Let x,a, b € G, x' be the inverse of
x in G = (G, E) and e the neutral element in G = (G, E) and by equation (29), EV(x, x) = E(xax’,b) A EX(a’,a’) A
EY(b',b") and EY(x',x") = EY(x'bx,a) ANE*(a’,a) NEY(D',b"). If q=E(x'ax,b) NE(a',a’) AEX(b',b") then
E(x'ax,b) = q. Therefore, (x'ax, b) € E, implying

[x’ax]Eq = [b]Eq

= [x]g,[alg, [x]E, = [Dlg,

= [x]g, = [blg, [x]g,[a']E,

= (x,bxa’) € E,

= E(x,bxa’) = q.
similarly, If ¢ = E(xbx',a) AE(a’,a’) then E(xbx', a) = q. Therefore, (xbx',a) € E, implying

[Xbx’]Eq = [a]Eq

= [x]g, [blg, [*']e, = [alg,

= [x]g, = lalg, [x']g, [D]E,

= (x',ax'b") € E,

= E(', ax'b") = q.
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Thus, EY(x,x) = E(xax',b) AE'(a’,a") AE*(V',b") = E(xax',b) AE*(a',a’) AEY(a,a) AEX(D',b") AEY(b, b)
and EV(x',x") = E(x'bx,a) AE*(a’,a) NEY(D',b") = E(x'bx,a) AEY(a',a’) AEY(a,a) AEX(D',b") AE*(b,b).
Therefore

EV(x,x) NEV(x',x") = E(xax',b) NE*(a’,a’) AEY(a,a) AEX(D',b") A

EY(b,b) NE(x'bx,a) NEX(a',a") NEY(a,a) AEY(b",b) AELX(b,b) =

E(xax',b) ANE*(b',b") ANEX(b,b) A EY(a,a) AEY(a’,a") A E(x'bx,a) A

E'(a’,a) AE*(a,a) AE*(b',b") A E*(b,b) < E(xax',b) NE(b',b") A E* (b, b)

ANEYa,a) NE(d',a") NE(x'bx,a) NE(a',a") AEY(a,a) AE(b',b") ANEY(b,b) =

E(xax',b) NE(b',b") NE*(b,b) AEY(a,a) NE(xX'bx,a) AE(a’,a’) A EY(a, a)

AE'(b, b)

= EV(x,x) NEY(x',x") < E(xax'b’,bb") A E*(b,b) A E*(a,a) A E(x'bxa’, aa")

AEY(a,a) AEY(b,b) (compatibility)

= EV(x,x) NEY(x',x") < E(xax'b’,e) AE*(b,b) AE*(a,a) AE(x'bxd’, e)

AEY(a,a) AEY(b,b) (Inverse element in G).
let g =p =E"(x,x) AEY(x',x") then E(xax'b’,e,e) ANE*(a,a) AE'(b,b) NE(x'bxa’,e) AE*(a,a) AE*(b,b) >
p. Therefore, (xax'b’, e) € E, and (x'bxa’, e) € E,, implying

[xax'b’]Ep = [e]Ep

= [x]g,lalg, [x']e, D], = lelk,

= [x]g, [ax’b']Ep = [e]g,

= [x]g, [x]E, = €], (@ =z p)

= (xx',e) € E,

= E(xx',e) = p.
and

[x'bxa’]Ep = [e]Ep

= [x']g, [bE, [x]e,[a']e, = [elg,

= [x’]E,, [bxa’]Ep = [elg,

= [x]g, [x], = [elg, @ =z p)

= (x'x,e) €EE,

= E(x'x,e) = p.
Thus

EV(x,x) NEV(x',x') < E(xx',e) ANE*(a,a) AEY(b,b) NE(x'x,€) AE*(a,a) A E*(b,b)

=S EV(O,x) AEY(X,x) NEV(x',x") < E(xx',e) NE'(a,a) ANE*(b,b) NE(x'x,€) A

El(a,a) NEY(b,b) NEV(x', X)

= EV(x,x) < E(xx",e) NE'(a,a) NEYX(b,b) NE(x'x,€) NE*(a,a) AE*(b,b) AEY(x',x")

(where EV(x',x") = EY(x,x))

= EV(x,x) < EV(xx',e) NEV(x'x,e) NEV (X', x") (by equation(30))

> v(x) S v(X)AEY(xx',e) NEV(x'x, e). (EY(x,x):=v(x) )
Hence v(x) < v(x") AEY(xx',e) A EY(x'x, e).
Next we show the existence of the neutral element in N;(A). By equation (29), E (x, x) = E(xax’,b) AE*(a’,a") A
EX(b',b") and EV(e,e) = E(eae’,b) NEX(a',a) NEX(b',b"). If q = E(x'ax,b) NE(d’,a’) then E(x'ax,b) = q.
Therefore, (x'ax, b) € E, implying

[xax’]Eq = [b]Eq'
similarly, If ¢ = E(eae’,b) AE(a’,a’) AE(b',b") then E(eae’, b) = q. Therefore, (eae’, b) € E, implying

[eae’]Eq = [b]Eq-
Thus, EV(x,x) = E(xax',b) AE*(a',a") NEX(V',b") = E(xax',a) AE*(a’,a") A EY(a,a) A EX(b',b") A EL(b, b)
and EV(e,e) = E(eae',a) NE*(a',a) NEX(V',b") = E(eae’,a) NEYX(a',a’) NEY(a,a) AEX(b',b") ANE1(b, D).
Therefore

EV(x,x) NE'(e,e) = E(xax',b) NEY(a',a") NEY(a,a) NEX(b',b") A

E'(b, b) A E(eae’, b) AEX(a’,a’) A E'(a, @) A EX(B, b') A EX (b, b) =

E(xax',b) NE*(a',a") NEY(a,a) ANEY(D',b") AEL(b,b) A E(eae’,b) A

E'(a’,a) AE*(a,a) NEY(b',b") AEY(b,b) < E(xax’,b) ANE*(a',a") A

El(a,a) NE(b',b) NEY(b,b) NE(eae’,b) AE*(a',a) NEY(a,a) NE(D', b))

AE'(b, b)
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= EV(x,x) ANEV(e,e) < E(xax'b’,bb") A E'(a,a) A E*(b,b) A E(eae’b’,bb") A

El(a,a) NEY(b,b) (compatibility)
= EV(x,x) NEV(e,e) < E(xax'b’,e) ANE'(a,a) AE*(b,b) AE(eae'b’,e) A
El(a,a) ANEY(b,b) (b' inverse of b in G)

let ¢ >p =E"(x,x) AEY(e,e) then E(xax'b'x,x) AE'(a,a) A E1(b,b) A E(xeae'b’,x) AE(a,a) ANE*(b,b) >
p. Therefore, (xax'b'x, x) € E, and (xeae'b’, x, x) € E, implying
[xax'b'x]g, = [x]g,
= [xax']g, [b]g, [x]e, = [x]E,
= [b]g, [b']g, [x]E, = [x]g, (@ =z p)
= [bb']5, [x]5, = [x]s,
[e]Ep[ ] = [x]g Ep (Inverse element)
= [ex]g, = [x]Ep
= (ex,x) €E E,
= E(ex,x) = p.
and
[xeae'b'], = [x]g,
> [¥)g, leae']g, [b']g, = [x]z,
= [x]g, [b]E, [b]E, = [x]E, (@ =2 p)
= [x]g, [bb']s, = [x],
= [x]g [e] =[x ] (Inverse element)
[xe]Ep [x]Ep
= (xe,x) € E,
= E(xe,x) = p.
Thus
EV(x,x) NEV(e,e) < E(ex,x) AEY(a,a) AE*(b,b) A E(xe,x) ANE'(a,a) AE*(b,b)
= EV(x,x) NEV(e,e) ANEV(e,e) < E(ex,x) AEY(a,a) AEY(b,b) AE(xe,x) A
El(a,a) NEY(b,b) AEY (e, €)
= EV(x,x) < E(ex,x) ANE*(a,a) AE'(b,b) NE(xe,x) AE'(a,a) ANE*(b,b) NE” (e, €)
(where EV(e,e) = E"(x,x))
= EV(x,x) < EV(ex,x) NEV(xe,x) ANEV (e, e) (by equation(30))
= v(x) < v(e) ANEV(ex,x) A EY(xe, x). (EV(x,x):=v(x) )
Hence v(x) < v(e) A EV(ex,x) A EV(xe, x).
We have prove that Ny (4) = (G, E”) is an Q-subgroup of G = (G, E).
Of course N;(A) = (G, EV) is an Q-subgroupoid of G =(GE).
Let G = (G, E) be an (strict) Q-group and E: G2 — Q be defined by

EV(x,x) = E(xa,xa) AE(a’,a") (34)
for which
EV(x,y) = E(x,y) NE'(a,a) (35)
fora,x,yeG
We consider v be Q-valued function on G which is an determine by E). Therefore, the pair (G,EY) is an Q-
Q-valued subset of the Q-valued function pu. set as presented in Proposition 4.9 and hence an Q-

subset of the Q-set (G, E).
Proposition 4.9 Let EV be a symmetry and transitive

0 relation on G as given by equation 34 above and Corollary 4.10 Let (G,E) be an 2-setand (G,E")

fulfilling E¥ < E. Then the following holds: an -subset of the 0-set (G, E) as given above. Then

EV(x,y) =EV(x,x) ANEY(y,y) NE(x,y) (36) EY(x,x) ANE(a,a) < E(xax’,a) (37)
forx,a € G

Proof. Proof analogous to the proof of proposition
4.2).

Clearly proposition 4.9 shows that EV is a restriction
of E to the nonempty Q-subset v of u (where u is
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Proof. Proof analogous to the proof of proposition
(4.2).

The Q-valued function v: G — Q on G is defined by
v(x): = EV(x, x). Hence we rewrite equation (27) as
v(x) Au(a) < E(xa,xa) (38)

Remark 4.11 Observe that the Q2-valued function v
on G which is an Q-valued subset of the 2-valued
function u fulfills equation (21), therefore the £2-set
(G, E) will be referred to as an 02-center of the (strict)
0-group G = (G, E).

Like in the crips classical group theory the set of
elements in the center of a given group forms a
subgroup of the group. Therefore, the next results
gives this analogy for an Q-group.

Proposition 4.12 Let G = (G,E) a (strict) £2-group
and (G,EV) an Q-center of G = (G,E). If EV is
compatible with the operation defined in G = (G, E),
then Z;(G) = (G, E¥) is an 2-subgroup of G = (G, E).
Proof. Proof analogous to the proof of proposition
(4.4).

5.0 Conclusion

In the framework of Q-group in the language of Q-
groupoid some particular Q-subgroup of an Q-group as
in the case of classical group theory generated by Q-
centralizers, Q-centers and Q-normalizers of an Q-
subset of an Q-group are presented and investigated.
In this framework our next task is to further our
investigation into  Q-normal  subgroups, Q-
homomorphisms, Q-isomrphisms and then Q-group
action and its related concepts.
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