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1.0 Introduction  
Leptospirosis disease is known global as zoonotic 

disease triggered by bacteria called leptospira (WHO, 

2006). Human and other animals, commonly livestock 

are mostly infected from this bacteria infection. 

Human contracted leptospirosis infection through 

drinking or interacting with water and other surfaces 

in which an infected rat (dead rats) is found, while 

cattle that drink this water becomes infectious 

(Muhammad et al., 2016). Leptospirosis disease is 
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transmitted by many animals such as rodents, skunks, 

opossums, raccoons, foxes, and other vermin. Human 

being acquired leptospirosis infection after interacting 

with contaminated surfaces by either of the secondary 

host organisms (Pongsumpun, 2012). It is also 

reported that people living in the cities are mostly 

infected by this disease which leads to liver infections 

(Pongsumpun, 2012).  Leptospirosis infection is 

known and called different names at the early times as 

regards the people, occupation and days of its 
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manifestation. Few of such is: Weil’s disease, canicola 

fever, canefield fever, 7-day fever, nanukayami fever 

(Muhammad et al., 2012). Leptospirosis infection 

indices are in various forms in human population to the 

extent that it can cause acute febrile illness and patient 

having this form of illness can recover naturally 

without medical treatment. The severe forms of this 

disease are usually referred to as Weil’s disease. This 

disease can occur in various forms depending on the 

severity and observed symptoms such as acute renal 

failure, haemorrhagic diathesis and aseptic meningitis. 

Previous studies revealed that there is high mortality 

rate when leptospirosis infection deteriorates to severe 

pulmonary haemorrhagic form. It is on record that 

over 200 serovars of pathogenic leptospires are 

prevalent in human population. The different species 

of leptospira can further be divided into serovars 

groups as analyzed by a well-defined agglutination 

after cross-absorption with homologous antigen 

(Monahan et al., 2009).  

Much attention has not been given to leptospirosis 

diseases in most tropical region and this has resulted 

to adverse effects on human and livestock health 

(Garba et al., (2018). This important negligence, 

especially in the technologically advanced regions of 

the world is partly due to the relatively low number of 

reported human cases, less unembellished 

complications and truncated incidence in animals 

especially in the temperate climate zones. On the other 

way, there is increase in cases of severe incidence of 

this infection in under-developed tropical countries 

(Garba et al., 2018). The true incidence and global 

distribution of the disease is unknown (Muhammad et 

al., 2014). Clinical analysis of the disease is quite 

problematic since similar symptoms can be observed 

in other infections like rickettsioses, dengue fever, 

malaria and yellow fever (Bharti et al., 2003). 

Outbreak of leptospirosis infection depends on the 

season and may often be linked to environmental 

factors involving animal activities, agricultural 

activities and occupational migration (Allan, 2016). 

Researchers asserted that in case of vector-borne 

disease, focus should be given to eradication of the 

causative bacteria population as a way for controlling 

the disease. Others previous work considered 

administration of vaccine on the affected organism 

(Muhammad et al., 2012). 

Mathematical models have gained wide acceptance as 

a vital tool for studying the dynamics of the 

transmission of infectious diseases. In the past 

decades, scholastic researchers and mathematicians 

including (Muhammad et al., 2012; Bharti et al., 2003; 

Monahan et al., 2009) have accepted mathematical 

models to study leptospirosis fever (Weil’s disease) 

and other related diseases. The present study extends 

the work of (Muhammad et al., 2014) by adding 

vaccination compartment as a control strategy in the 

leptospirosis model to determine the nature of stability 

of the disease, and further investigate vaccination as 

an important control measure that will aid in reducing 

the disease prevalence in human population. 

 

2.0 Materials and methods 

2.1 Formulation of Leptospirosis infection model 

A model of total human population denoted as ( hN ) 

and total vector population as ( vN ) was formulated to 

describe the dynamics of leptospirosis infection. The 

human population at time, (t) is sub-divided into five 

(5) classes. Vector population at time (t) is sub-divided 

into three (3) classes. Susceptible ( S ), Expose ( LE ), 

Active (infected) human population ( LI ), Recovered 

human ( LR ) and Vaccinated human (V); Susceptible 

vector ( vS ), Infectious vector ( vI ), and Recovered 

vector ( vR ). h L L LN S E I R V      and   

v v v vN S I R   . 

Susceptible humans are recruited at a rate (1 )h f 

[where (1 )f are proportion of human not 

vaccinated], while susceptible vector are recruited at a 

rate v . 

Susceptible human contract leptospirosis from 

infected vectors at a rate: 
(1 )VL v

VL
h

I

N

 



  

Susceptible vectors (domestic animals and rodents) 

acquire leptospirosis from infected human at a rate: 

 
( )LV A L B L

LV
h

B E I

N

 



  ,  

where A B  denotes relative infectiousness of 

human with expose leptospirosis compared to human 

infective (active) leptospirosis disease. 
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2.2 Equations of the model 
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2
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4

6
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  

      

 

 

 

    

 

 

         (1)     

 

where,  1k ( )L h   , 2k ( )L h   , 3k ( )L h L     , 4k ( )L h   , 5k ( )v v v     and 6k ( )v v                                           

 

 

 

 

 

 

 

 

 

 

 

                                            

                                     

 

 

Figure 1. Flow diagram of Leptospirosis infection  

 

Table 1: Description of state variables for equation (1) 

Symbols          Description 

V                   Vaccinated human population against leptospirosis infection 

S                   Susceptible human population 

EL
                Exposed human (asymptomatic) with potential leptospirosis causing bacteria 

IL
                 Infected (active) human with leptospirosis disease 

RL
                Treated human population of leptospirosis disease 

Sv
                 Susceptible vector population 

Iv
                  Infectious (active) vector population with leptospirosis disease  

Rv                  Recovered vector population from leptospirosis disease 

 

 

2.3 Basic analysis of the model (1) equation 

2.4 Boundedness of solutions of model (1) equations 

We shall consider the region 8
2 L L L( , ,E ,I , , , ,R ) : , .h v

v v v h v
h v

V S R S I N N
 



   
     

  

 We prove that the region 2 is 

positively invariant and an attractor of all positive solutions of the model (1). 
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Table 2: Description of parameters for leptospirosis disease  

Symbol   Description                                                                                                          Value (Year-1)                 Reference 

h         Birth or recruitment rate of human into the susceptible population                   6000                                Assumed      

h          Natural death rate of all human subclasses                                                         0.00046                          (Okosun, et al. 2016) 

L         Waning rate of temporary immunity of the vaccinated human                          0.75                                  (Okosun, et al. 2016) 

L           Treatment rate of infected human with leptospirosis                                         0.25                                (Okosun, et al. 2016) 

L         Rate at which recovered human from leptospirosis lose immunity                  
0.0004                           (Okosun, et al. 2016) 

L          Progression rate of carrier human into infective subclass                                  0.0027                           (Okosun, et al. 2016) 

L           Disease induced death rate of human due to leptospirosis                                 0.001                              (Okosun, et al. 2016) 

v           Birth or recruitment rate of vector into the susceptible population                     600                                Assumed 

v           Natural death rate of the vector                                                                          0.0018                           (Khan, et al. 2012) 

 v          Recovery rate of infected vector                                                                         0.05                               (Okosun, et al. 2016) 

v  
          Death rate of vector due to leptospirosis disease                                                0.0018                           (Khan, et al. 2012) 

LV
        Force of infection of vector with leptospirosis from human                               0.074                             (Khan, et al . 2012) 

  v          Waning rate of temporal immunity of recovered vectors                                    0.004                             (Khan, et al . 2012) 

f
           Proportion of human population vaccinated against leptospirosis disease          0.8                                 Assumed         

LV
        Effective contact rate for leptospirosis from vector to human                            0.05                               (Khan, et al . 2012) 

LV
        Effective contact rate for leptospirosis from human to vector                            0.000078                       (Khan, et al . 2012) 

A            Relative infectiousness of human with latent leptospirosis at exposed class      0.05                               Assumed 

B            Relative infectiousness of human with latent leptospirosis at infected class      0.8                                 Assumed 

              Compliance rate to public awareness campaign                                                  0.25                               Assumed
 

 

Lemma 1: The region 2 is positively invariant for the model (1) 

Proof: The rate of change of the total human population is given thus: 

L L LhN V S E I R
     

                (2) 

h h h h L LN N I 


              (3) 

By standard comparison theorem 

h h h hN N


              (4) 

Integrating both sides by integrating factor method gives: 

 (t) (0) 1h hu t th
h h

h

N N e




 
            (5) 

Also, for the vector compartment, 

v v v v v vN N I 


              (6) 

By standard comparison theorem 

v v v vN N


              (7) 

Similarly, solving (7) by integrating factor method we obtain 

 (t) (0) 1v vu t tv
v v

v

N N e




 
            (8) 
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In particular, ( ) h
h

h

N t



  if (0) h

h
h

N



  and ( ) v

v
v

N t



  if (0) v

v
v

N



  , respectively. 

Hence 2 is a positively invariant set and the solution enters 2 in finite time or  ( ) h
h

h

N t



  and ( ) v

v
v

N t



  as 

t  . Therefore, it becomes relevant to study the dynamics of the model (1) in the region, 2 . In this space, 

model (1) is considered scientifically (mathematically) and epidemiologically well posed. 

 

2.5 Positivity of solutions of model (1) 

Lemma 2: Let the initial data for model (1) be: 

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0,and ( ) 0L L L v v vS t E t I t R t S t I t R t       , then the solution 

{ ( ), ( ), ( ), ( ), ( ), ( ) and ( )L L L v v vS t E t I t R t S t I t R t } with real positive number initial data will remain positive at all time 

0t  . 

Proof: Let 2 = sup  0; ( ) 0, (t) 0, (t) 0, (t) 0, (t) 0, (t) 0, (t) 0 0L L L v v vt S t E I R S I R          for the model (1), and 

assuming ( 0L L   ) 

(1 ) ( )
VLh hS f S 



              (9) 

Solving by integrating factor method 

I.F =
0

( ) ( )
t

h VLexp t exp d   
 

   
 
          (10) 

0 0
( ) ( ) ( ) (1 ) ( ) ( )

t t

h VL h h VL

dS
S t exp t exp d f exp t exp d

dt
       

       
                        

   

Integrating both sides results to 

0 0 0
( ) ( ) (0) (1 f) ( )

t t y

h VL h h VLS t exp t d S exp y d dy       
       

         
        

    

0 0 0
( ) ( ) (0) (1 f) ( )

t t y

h VL h h VLS t exp t d S exp y d dy       
       

         
        

    

0 0 0 0
( ) (0) ( ) ( ) (1 f) ( )

t t t y

h VL h VL h h VLS t S exp t d exp t d exp y d dy           
           

               
            

      > 0  (11) 

It is therefore accomplished that all the state variables of model (1) are real number whenever 0t  , That is; 

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, and ( ) 0L L L v v vS t E t I t R t S t I t R t        at all 0t  . This completes the proof. 

 

2.6 Local stability of Disease-Free Equilibrium (DFE) of model (1) 

We solved and obtained the disease-free equilibrium of model (1) by setting the left-hand side of model (1) equations 

to zero and setting the classes with infection to zero as shown below.  

 * * * * * * * * * 1

1 1

(1 )
, , , , , , , , ,0,0,0, ,0,0h h L h v

L L L L v v v
h v

f f k f
V S E I R S I R

k k




 

      
   

 

   (12) 

We would establish the steady state of *
L  by next generation operator approach as shown in Van Den Driessche and 

Watmough, (2002). We do this by computing matrices F and 1V   thus: 

 

        

*

*

* *

* *

(1 )
0 0

0 0 0

0

h

h h

VL

LV A v LV B v

B S

N

F

B S B S

N N



 

 
 
 
 

  
 
 
 
 

        (13) 
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2

1

2 3 3

5

1
0 0

1
0

1
0 0

L

k

V
k k k

k



 
 
 
 

  
 
 
 
  

          (14) 

 

 

*

*
5

1

* *
3
* *

2 3 3

(1 )
0 0

0 0 0

( )
0

h

h h

VL

LV A B L v LV B v

B S

N k

FV

B k S B S

N k k N k



   



 
 
 
 

  
 

 
 
 

     (15) 

 

The eigenvalue is obtained as: 

 

ELR 

* *
3

*2
2 3 5

(1 ) ( )

N

VL LV A B L V

h

B S B k S

k k k

    
        (16) 

.EL H VR R R            (17) 

*

*
2 3

(1 )

N

VL
H

h

B S
R

k k


           (18) 

*
3
*

5

( )

N

LV A B L V
V

h

B k S
R

k

  
          (19) 

    

 Where, 2 3 5( ), ( ),k ( )L h L h L v v vk k                

 

Theorem 1: The disease-free equilibrium, (DFE) of model (1) is locally asymptotically stable if 1ELR  and unstable 

if 1ELR  . 

Proof: By theorem 1, epidemiologically and mathematically, leptospirosis infection would be eradicated from 

human population when  1ELR   whenever the initial population size of subhuman of model (1) is within the region 

of attraction of 
*

L
 . 

 

2.7 Global stability of disease-free equilibrium of model (1) 

Theorem 2:  Disease-free equilibrium *
L  is globally asymptotically stable, (GAS) in the region 2  whenever 

1ELR  . 

Proof: We would show this theorem 2 by developing a Lyapunov function with positive constants technically 

chosen as 1D , 2D  and 3D  such that 1 0,D  2 0D  and 3 0D  .  

        

1 2

3

(S ln ) ( ln ) ( ln )

(S ln ) (R ln )

o o o o o oL
L L L L Lo o o

L

o o o ov v
v v v v v v vo o

v v

RS V
V S S D E D I R R R V V V

S R V
S R

S S D I R R
S R

          

      
 (20)      
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The derivative of (20) with respect to time t, is obtained as: 

1 2

3

(1 ) (1 ) (1 )

(1 ) (1 )

oo o

L L L L

L
o o

v v v v v

v v

dE dI R dRdV S dS V dV
D D

dt S dt dt dt R dt V dt

S dS dI R dR
D

S dt dt R dt

       

    

    (21) 

Substituting the values for the derivatives of model equation (1) into (21) gives: 

 

   

   

   

   

1

2

3

(1 ) (1 ) ( ) ( )

( ) (1 ) ( )

(1 ) ( ) (1 ) ( )

( ) (1 ) ( )

o

h L L L VL h VL L h L

o

L
L L L h L L L L L h L

L
oo

v
h L h v v v LV v v

v
o

v
LV v v v v v v v v v v

v

dV S
f V R S D S E

dt S
R

D E I I R
R

SV
f V R S

V S

R
D S I I R

R

      

      

    

      

          

       

          

       

  (22) 

After forming the Lyapunov function over the eight state variables, ( , , , , , , ,L L L v v vS V E I R S I R ), we introduce 

the idea from (Martcheva, 2015). It is clear that if ( ( ), ( ), (t) )L L vE t I t I  at DFE are globally stable, thus  

( 0)L L vI E I    

This implies that ( ) (1 ) , ( ) ( ) , ( )h L h h L h v v vS t f V V t f S t             (23) 

By Standard comparison theorem 

(1 ) , ( ),o o o

h L h h L h v v v vS S f V V V f S S                 (24) 

Substituting (24) into (22) gives: 

* * * * * *

1 2 3( ) ( ) ( )
L L v vVL L h L L L h L LV v v v

dV
D S E D E I D S I

dt
                            

 

           (25) 

         

        
* * * * * *3

1 2 2 3 3 5* *

(1 ) I ( )
L L v v

h A

VL v LV A B L
L L

B B k
D S k E D E k I D S k I

N N

   


    
          

     
 (26) 

         

*1
1 2*

1

* *

2 3

*3
3 5*

(1 ) ((1 f) f )
I

( )

h

L L

v

VL h L
v L

h

L

LV A B L v

h v

B k
D k E

N k

D E k I

B k
D k I

N

 





  



    
   

  

   

  
  

 

     (27) 

https://doi.org/10.54117/gjpas.v2i1.66


Available: DOI: https://doi.org/10.54117/gjpas.v2i1.66   Research article 

65 
GJPAS/Volume 2/Issue 1/Jan – Jun/2023 

            

*1
1 *

1

*

1 2

*

2

*

2 3

*

3 *

*

3 *

*

3 5

(1 ) ((1 f) f )
I

v

h

L

L

v

VL h L

h

L

L

LV A v
L

h v

LV B v
L

h v

B k
D

N k

D k E

D E

D k I

B
D E

N

B
D I

N

D k I

 













    
   

 
 















      (28) 

Collecting like terms gives: 

*1 1
3 5*

1

*

2 1 2 3 *

*

3 2 3*

(1 ) ((1 f) f )
I

v

h

VL h L

h

LV A v
L L

h v

LV B v
L

h v

D B kdV
D k

dt N k

B
D D k D E

N

B
D D k I

N

 












    
  

 
 
 

   
 
 

  
 

      (29) 

Equating the coefficient of 
* * *, , 0
v L LI E I  , and solving gives 

2 *

3 3

LV B v

h v

B
D

N

D k










           (30) 

3
1 *

3

( )LV v A B L

h v

B k
D

N k

  



 
          (31) 

1 1
3 5*

1

(1 ) ((1 f) f )

h

VL h L

h

D B kdV
D k

dt N k

 



    
  
 
 

      (32) 

Substituting for 1D and 3D into (32) gives 

1 3
3 5*2

1 2

(1 ) ((1 f) f )( )

h

LV v VL h L A B L
L

v h

B B k kdV
k k I

dt N k k

    

 

      
  
 
 

* *

3 v
3 5 *2

2 3 5

(1 ) ( )S
1

h

VL LV A B L
L

B S B kdV
k k I

dt N k k k

     
  

  
      (33) 

2

3 5 1
EL L

dV
k k R I

dt
   

, if 1ELR  .         (34) 
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Also, 0
dV

dt
 if and only if 0LI  . Therefore, for 0L L vE I I   it shows that 

( ) (1 ) ,V( ) , ( )h L h h L h v v vS t f V t f S t           whenever t . Hence, the 

principal compact invariant set in the set 2( , , , , , , , ) : 0L L L v v vS V E I R S I R dV dt  . Therefore, from 

LaSalle’s invariance principle, we conclude that 
*

0  is globally asymptotically stable in 2  if 1ELR  . 

2.8 Existence of endemic equilibrium point of model (1) 

We represent the endemic equilibrium point (EEP) of model (1) as: 

 ** ** ** ** ** ** ** ** **
2 , , , , , , ,L L L v v vV S E I R S I R  and solving the model equations (1) in relationship with the force of 

infection at equilibrium state gives the following (assumption: let 0L v   ). 

  

 

** **
1 1 1

** ** **
1 1 1 2 1 2 3** ** ** ** ** ** ** **

**
1

** *
1 2 3 4

(1 f) ( (1 f) ) ( (1 f) )
, , , ,

( ) ( ) ( )
, , , , , , ,

( (1 f) )
,

( ) (

h h L h h L h VL L h L h VL

VL h VL h VL h
L L L v v v

L h L h VL v

VL h LV

f k f k f k f

k k k k k k k
V S E I R S I R

k f

k k k k

     

     

  

  

            

  


    



** **

* ** **
5 5 6

, ,
) ( ) ( )

v LV v v LV

v LV v LV vk k k

  

    

 
 
  
 

  
 

    

 

             

Recall that: 
** ** **

** **

** **

(1 ) ( )
,VL v LV A L B L

VL LV

h h

B I B E I

N N

  
 

 
        (35) 

Substituting the expression for **
vI in (35) gives: 

**
**

** **
5

(1 )

( )

VL v LV
VL

h LV v

B

N k

 


 

 



         (36) 

Substituting for ** **
L LI and E in (35) gives: 

 

** **
1 1

** **
1 2 1 2 3**

**

( (1 ) f ) ( (1 ) f )

( ) ( )

A h L h VL B L L h VL
LV

VL h VL h
LV

h

f k f k
B

k k k k k

N

      

   


         
 

     

 
**

1 3**

** **
1 2 3

( (1 ) f )

( )

LV h L h A B L VL
LV

h VL h

B f k k

N k k k

    


 

      


      (37) 

Substituting (37) into (36) gives: 

  
**

3 1 1

**
** 1 2 3

**
3 1 1** **

5 **
1 2 3

(1 ) ((1 )k ) ((1 )k )

k k k ( )

((1 )k ) ((1 )k )

k k k ( )

VL v LV A h L L B h L VL

VL h
VL

LV A h L L B h L VL
h v h

VL h

B B k f f f f

B k f f f f
k N N

      

 


     


 

          




          
  

 

Simplifying the above expression gives 

  
**

** 9
** ** **2 ** **2

5 9 5 5

v LV VL
VL

h LV VL h v VL h v h

A B M

k N B M k N P k N P




    




 
      (38) 

**2 **
1 2 0VL VLA A             (39) 

** **
1 2( ) 0VL VLA A     

** 2

1
VL

A

A
              (40) 

Where ** **2
1 5 1 3 5 1 2 3((1 ) )[ ]h LV h L A B L h vA k N B f k f k k N k k k           

 **2
2 1 2 3 5 1 3(1 ) ((1 ) )[ ]h h v VL v LV h L A B LA N k k k k B B f k f k               
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**2 1 3

1 2 3 5 **2
1 2 3 5

(1 ) ((1 ) )[ ]
1 VL v LV h L A B L

h h v

h h v

B B f k f k
N k k k k

N k k k k

    
 

 

      
  

  
 

        **2 2
1 2 3 5 1h h v ELN k k k k R   

 
        (41) 

2 0A  if 1ELR   

Therefore, model equation (1) has a distinctive (stable) endemic equilibrium if 1ELR   since 2 0A  for 1ELR  . 

 

 

2.9 Local stability of endemic equilibrium of model (1) 

The Jacobian expressed in terms of force of infection is obtained thus: 

2

1

**

**
2

3**

4

**

**
5

6

0 0 0 0 0 0 0

( ) 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
( )

0 0 0 0 0 0

0 0 0 0 0 ( ) 0 0

0 0 0 0 0 0

0 0 0 0 0 0

L VL h

VL

L

L

LV v

LV

v

k

k

k
J

k

k

k

  








 





 
 

  
 

 
 
 

 
 

  
 

 
  

 

Resolving the 
2

**( )J  using upper triangular matrix, we obtain thus:  

2

1

**

2

3**

4

**

5

6

0 0 0 0 0 0 0

0 ( ) 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
( )

0 0 0 0 0 0 0

0 0 0 0 0 ( ) 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

VL h

LV v

k

k

k
J

k

k

k

 



 

 
 

  
 
 
 

 
 

 
 

 
 
 

  

     (42) 

the eigenvalues are: 
** **

1 1 2 3 2 4 3 5 4 6 7 5 8 60, ( ), 0, 0, 0, ( ), 0, 0VL h LV vk k k k k k                              

Recall that:  

**2 2
1 2 3 5** 2

** **
1 5 1 5 1 2 3

1
0

((1 ) )

v h h EL

VL

h LV h L h v

k k k k N RA

A k N B f k f k N k k k

 


 

 
   

   
 

If 1ELR  , therefore **
2 ( ) 0VL h      

Also, 6 ( )LV v     

** 1 3
** **

1 2 3

((1 ) )[ ]
0

( )

LV h L A B L
LV

h VL h

B f k f k

N k k k

   


 

   
 


 if  1ELR   

then, **
6 ( ) 0LV v     , if 1ELR  .  

We then conclude that the endemic equilibrium of leptospirosis infection is shown to be locally asymptotically 

stable (LAS), whenever 1ELR  . 

 

2.10 Global stability of endemic equilibrium of model (1) 

Theorem 3:  The endemic equilibrium point of model (1) is globally asymptotically stable if 1ELR  , otherwise 

unstable if 1ELR   

Proof: Let verify this using Lyapunov function and substituting equations of model (1). 

We assumed that:   

The simplified model equation (1) is thus: 
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1

1 2

3

2

2 5

h v h

L v L

L L L L

L v L v v v

v L v v

S B I S S

E B I S k E

I E k I

S B I S S

I B I S k I

















  

 

 

  

 

         (43) 

** ** ** ** ** **

** ** **

** ** ** **

** **

( ln ) ( ln ) ( ln )

(S ln ) ( ln )

L L
L L L L L L

L L

v v
v v v v v v

v v

E IS
F S S S E E E I I I

S E I
s I

S S I I I
S I

        

     

   (44) 

Differentiating (44) gives: 
** **** ****

( ) ( ) ( ) ( ) ( )v vL L
L L L L v v v v

L L Lv v

S IE IS
F S S E E I I S S I I

S E I S I
             (45) 

Substituting (43) into (44) gives: 
****

1 1 1 2 1 2

****

3 3 1 1

**

1 5 1 5

([ ] [ ]) ([ ] [ ])

([ ] [ ]) ([ ] [ ])

([ ] [ ])

L
h v h h v h v L v L

L

vL
L L L L L L v L v v v v L v v v

L Lv

v
L v v L v v

v

ES
F B I S S B I S S B I S k E B I S k E

S E

SI
E k I E k I B I S S B I S S

I S

I
B I S k I B I S k I

I

 

   

           

           

   

   (46) 

****
** ** **

1 1 1 2 1 2

****
** ** **

3 3 1 1

**
**

1 5 1 5

L
h v h h v h v L v L

L

vL
L L L L L L v L v v v v L v v v

L v

v
L v v L v v

v

ES
F B I S S B I S S B I S k E B I S k E

S E

SI
E k I E k I B I S S B I S S

I S

I
B I S k I B I S k I

I

 

   

          

          

   

  (47) 

At steady state:  

** ** **

1

** ** **

2

vh h

v L v v v

B I S S

B I S S





  

  
        (48) 

Substitute (48) into (47) results: 
****

** ** ** ** ** ** ** **

1 1 1 1 1 2 1

****
** ** ** ** ** ** ** **

2 3 3 2 1 2

** **

1

( ) ( )

( ) ( )

v v

L L

L
h v h h v h v L v

L

vL
L L L L L L L v v v L v v v v v v

L v

L v v v

ES
F B I S S B I S S B I S S B I S S B I S k E B I S

S E

SI
k E E k I E k I B I S S B I S S B I S S

I S

B I S S B

   

    



          

          

    
**

**

1 5 1 5 49v
L v v L v v

v

I
I S k I B I S k I

I
  
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****2
** ** ** ** **2 ** **

1 1 1 2 1

**2**
** ** ** ** ** ** **2

2 3 3 2 2

**
** ** **

1 5 1 5

v v

L L

L
h h h v h L v

L

vL
L L L L L L L v v v v v v v

L v

v
L v v v v L v v

v

ES
F B I S S S B I S B I S S k E B I S

S E

SI
k E E k I E k I B I S S S B I S

I S

I
B I S S k I B I S k I

I

   

    



        

         

    

 (50) 

Substituting for 2 3 5,k k and k , simplifying and rearranging (50) gives: 

** ****2
** ** ** ** ** ** ** **2

1 1 1 1 1**

** ****2 ** **2
2** ** ** ** ** **2

2 2 2** **

2 2 (1 )

(1 ) 2 2

(

v v v v

L

L L L

v

L L L
v h h h L L

L L L

v vv v v L vL
L v L v v v v v v

L v v v

E E IS
F B I S B I B I S B I S B I S S S S E

S E E I

B I S IS B I S I SI
E B I S B I B I S S S

I S I I S

   

   

         

         

51)

 

 
** **** **

** ** ** **

1 1** ** **

** ** **
** ** ** ** **

2 2** ** **

2 1 2 1

1 2 1 2

v

L L L

L L L
v h L L

L L L

v v v v v vL
L v v v v

L v v v v v

E E IS S S S
F B I S B I S S E

S E S E S S I

S I I S S SI
E B I S B I S S

I S I I S S

 

 

      
                

      

    
             

     

**

vS

 
 
 

 (52) 

We therefore conclude that it is evident that the arithmetic mean (AM) exceeds the geometric mean (GM) then, 

these inequalities hold. 
** **** **

** ** ** **

** ** **

** ** **

2 0; 1 0; 2 0; 1 0; 1 0;

2 0;1 0; 2 0

L L L L

L L L L

v v v v v v

v v v v v v

E E I IS S S S

S E S E S S I I

S I I S S S

S I I S S S

           

       

    

0F  for all 1ELR   hence, F is a Lyapunov function in 
2  and the EEP is globally asymptotically stable, (G.A.S) (for 

special case 0d  ) based on the LaSalles invariance principle (LaSalles,1969). 

 

2.11 Bifurcation analysis of model (1) equations 

We would examine the reality of backward bifurcation phenomenon of the model (1) equations when 1ELR  . We 

use centre manifold theorem as presented by (Augusto, 2017; Castillo-Chavez and Song, 2004). 

Theorem 4: The model (1) equations undergo backward bifurcation phenomenon whenever 1ELR  under special 

condition that ( 0L  ). 

Proof: The proof is based on the Centre Manifold theorem. From model (1) equations, 

Let 1 2 3 4 5 6 7, , , , , ,L L L v vx V x S x E x I x R x S x I       and 8 vx R  

The following transformed equation is obtained for the model (1) equations. 

https://doi.org/10.54117/gjpas.v2i1.66


Available: DOI: https://doi.org/10.54117/gjpas.v2i1.66   Research article 

70 
GJPAS/Volume 2/Issue 1/Jan – Jun/2023 

1 1 1

7 2
2 1 5 2

7 2
3 2 3

4 3 3 4

5 4 4 5

3 4 6
6 8 6

3 4 6
7 5 7

8 7 6 8

(1 )
(1 )

(1 )

( )

( )

h

VL
h L L h

h

VL

h

L

L

LV A B
v L v

h

LV A B

h

v

x f k x
B x x

x f x x x
N

B x x
x k x

N
x x k x
x x k x

B x x x
x x x

N
B x x x

x k x
N

x x k x


  






 
 

 



  


     


 

 
 


   


 

 

     (53) 

The Jacobian of the equation (53) estimated at DFE is given as: 

2

2

0

6 6

6 6

1

*

*

*

2 *

3*

4

* *

* *

* *

5* *

6

0 0 0 0 0 0 0

(1 )
0 0 0 0

(1 )
0 0 0 0 0 0

0 0 0 0 0 0
( )

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

h

h

h h

h h

VL
L h L

VL

L

L

LV A LV B
v v

LV A LV B

v

k

B x

N

B x
k

N

k
J

k

B x B x

N N

B x B x
k

N N

k


  








 
 

 



 
 

 
  

 
 

 
 

 
 

 
 
 
 

  








 










    (54) 

We considered the case when *
VLB is selected as the bifurcation parameter at 1VLR  . We therefore have: 

*2
2 3 5*

* *
3(1 ) [ ]

h

v

VL

LV A B L

N k k k
B

B S k S   


 
       (55) 

The right eigenvector of *
0 VL VL

*

B B
( )J 


is assumed as:  1 2 3 4 5 6 7 8, , , , , , ,w w w w w w w w w where: 

 

2 2 2

2 62

* * *
2 3 4 7 7 7

1 2 3 4* * *
2 3 4 2 2 3

* * **
2 3 3 6 6 77 7

5 6 8* *2
2 3 4 2 3 6

(1 ) (1 ) (1 )
0; ; ; ;

(1 )(1 )
; ;

VL L L L VL VL L

h h h h

h v v LV VL A B LVL L L v

h h v

B x k k k w B x w B x w
w w w w

N k k k N k N k k

N k k B B x x k k k wB x w w
w w w

kN k k k N k k k

      



        



     
   

     
   7 7

6

; 0.w w 

 (56) 

The above eigenvectors were obtained by solving equation (57) below: 
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-

2

2

6 6

6 6

1 1

*
7

1 2 5 *

*
7

3 2 *

3 3 4

4 4 5

* *
3 4

6 8* *

* *
3 4

5 7* *

7 6 8

0

(1 )
0

(1 )
0

0

0

0

0

h

h

h h

h h

VL
L h L

VL

L

L

LV A LV B
v v

LV A LV B

v

w k

B x w
w w w

N

B x w
w k

N

w k w

w k w

B x w B x w
w w

N N

B x w B x w
k w

N N

w k w


  







 
 

 



 


   


  

 

 

    

 

 

       (57) 

Likewise, the *
0 VL VL

*

B B
( )J 


has left eigenvector as:  1 2 3 4 5 6 7 8, , , , , , ,v v v v v v v v v where; 

6 6

* *
3 7 7

1 2 5 6 8 3 4 7 7* *
2 3 3

0; ; ; 0.
LV L B A LV B

h h

B x k v B x v
v v v v v v w v v

N k k N k

     
             (58) 

The above eigenvectors were obtained by solving these equation (59) 

6 6

6 6

1 1 2

2

* *
6 7

2 3 4 * *

* *
6 7

3 4 5 * *

0

0

0

0

h h

h h

L

h

LV A LV A
L

LV B LV B
L

k v v

v

B x v B x v
k v v

N N

B x v B x v
k v v

N N





 


 


  

 

    

    

       (59) 

 2 2

2 4 5

6

* *
2 3

5 7 8* *

6 6 8

0

0

(1 ) (1 )
0

0

h h

L

v

VL VL
v

v

v k v

v

B x v B x v
k v v

N N

v k v





 




 



 
    

 

 

2.12 Computation of the Bifurcation Coefficient a and b for the model equation (53) 

We follow the Castillo-Chavez and Song deduction in Castillo-Chavez and Song, (2004) and  Andrawus et al. (2017). 

We considered the accompanying non-zero partial derivatives of the transformed model equation (53) required to 

calculate the bifurcation coefficients a  at (DFE) is expressed as: 

2

, , 1

(0,0)

n

k
k i j

i jk i j

f
a v w w

x x





          (60) 

We obtained the expression for the bifurcation coefficient a  as: 
22 2

72 2
3 2 7 7 3 6 7 4 7

2 7 3 6 4 6

2 (0,0) 2 (0,0) 2 (0,0)
ff f

a v w w v w w v w w
x x x x x x

 
  

     
     (61) 

  * * 22 (1 )7 3 2 3 4 72 6
2 2 *2
2 3

* * * * 2 * 22 (1 ) (1 )x x [ ] 2 (1 )7 2 3 3 6 6 772 2 6 72
2 * *2

3 6 2 32

v B B x x k k k k wLV VL B L L L LA
a

k k N
h

v B B x N k k B B k k k w v B B x wv vLV VL LV VL B LA LV B VL Lh

k k k N k k Nvh h

      

         



 
 
 

  


    
 

  (62) 

which leads to: 

1 2 3( )a G G G   ,         (63) 
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62

2 6 7

2 6 7

2 3

** *
37 2 3

1 *
3 2 6 22 3

2 * * 2
7 3 4

2 *2
2 3

* * 2
7 3

3 *2 2 2

( )2 (1 )

2 (1 ) ( )

2 (1 ) ( )

h

VL

h

h

VL B L A L L LLV VL v h v
B L

h v

LV B L A

h

LV VL B L A

h

B x kv B B x N k k
G

k k k kN k k

v B B x x k k w
G

N k k

v B B x x k w
G

N k k

       
 

 

   



   



 
   
 
 

 


 


   (64) 

2

*
, , 1

(0,0)

n

k
k i

i LVk i

f
b v w

x B





 
           (65) 

6

2
3

3 7 *
7

*
3 7 7

*2
2 3

(0,0)

(1 ) ( ) v
0

0

h

VL

LV B L A

f
b v w

x B

B x k w

N k k

b

   




 

 
 



        (66) 

It follows from (65) that the bifurcation coefficient, a, is positive whenever, 

1 2 3G G G  .           (67) 

We therefore conclude that the model (53) equations undergo a backward bifurcation phenomenon at 1ELR  whenever 

the inequality (67) holds.  

 

3.0 Numerical simulation 

We illustrate the results of the analysis by simulating 

the model (1) equations using parameters in Table 2. 

Figure 2 demonstrates the impact of public 

awareness/education ( ) on the dangers of 

leptospirosis to susceptible class. Here, we observe 

that an increase on ( ) may not necessarily lead to an 

increase or decrease on the susceptible class, since 

there is no outbreak/incidence of the disease yet. 

Figure 3 shows the impact of public 

awareness/education ( ) on the dangers of 

leptospirosis to the exposed class. Here, we observe 

that an increase on ( ) may lead to a reduction on the 

exposed human as indicated by decrease in the number 

of humans from the graph. Figure 4 indicates the result 

of infected class showing zero level leptospirosis 

incidence. Here, we see that there is a scenario in 

human population where there may not be cases of 

leptospirosis infection as a result of effective 

adherence to public awareness/educational campaign 

strategy.  

Figures 5, 6 and 7 indicates the impacts of vaccination 

on the control of leptospirosis transmission dynamics. 

These figures show that vaccination administered to 

(susceptible individuals in Figure 5), Figure 6 

(exposed individuals), and Figure 7 (infected 

individuals), respectively. Comparing the results 

displayed on Figure 5, Figure 6 and Figure 7, we 

observe that early vaccination of susceptible has a 

more significant impact on reducing new leptospirosis 

cases compared to vaccinating individual at exposed 

and infectious classes. However, this does not suggest 

that treating infectious leptospirosis is not necessary, 

but the study may be stressing the importance of early 

vaccination against leptospirosis as a more effective 

intervention strategy. 
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Figure 2: varying public awareness campaign on 

susceptible human 

 Figure 3:  Varying public awareness campaign 

on exposed human 

 

 

  

Figure 4: Varying public awareness campaign 

infected human             

 Figure 5: Varying vaccination rate on 

susceptible human 

 

                                                                                                                                                                                                         

 

Figure 6: Varying vaccination rate on exposed 

human 

 Figure 7: Varying vaccination rate on infected 

human 
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Figures 8 and 9 indicate the impact of treatment on the control of leptospirosis transmission dynamics. These figures 

show that right treatment may lead to increased recovery rate of infected individuals as shown in (Figure 8). Also, 

Figure 9 shows that treatment strategy given to infected individuals at varying treatment levels indicates reduction of 

the disease transmission dynamics, respectively.  

 

                                                       
Figure 8: Varying rate of treatment on recovery 

in human 

 Figure 9: Varying rate of treatment on infected 

human 

 

4.0 Results and discussion 

Epidemiologically, leptospirosis can be controlled in 

human population if the initial size of the bacteria 

concentration and the secondary hosts (rodents and 

domestic animals) can be reduced nearly to zero (small 

enough), such that the basic reproduction number can 

be brought to unity, (i.e. 1TR  ). Also, preventative 

measures such as public awareness campaign on 

healthy handling of the secondary hosts and routine 

maintenance of recreational centres such as swimming 

pools are suggested to reduce the disease outbreak.  

The model (1) undergoes the phenomenon of 

backward bifurcation whenever a stable disease-free 

equilibrium point coexists with a stable endemic 

equilibrium point and the accompanying basic 

reproduction number is equal to unity (Gumel, 2012). 

The epidemiological consequence of the backward 

bifurcation phenomenon of the model (1) is that the 

necessary condition for the basic reproduction number 

to be less than one becomes only a necessity, but not 

sufficient condition for leptospirosis disease control 

(Albert et al. 2009). Therefore, this research discovers 

that there was loss of acquired temporary protection 

from treatment with the use of antibiotics (penicillin) 

in human population for leptospirosis disease since the 

vaccine is still under laboratory investigation. Loss of 

temporal immunity of recovered humans ( L ) is the 

cause of backward bifurcation in the leptospirosis 

transmission dynamics in human population as it 

portrays why leptospirosis still persist in human 

population despite control measures being adopted. 

 

 

5.0 Conclusion  
In this research work, we formulate and analyzed eight 

(8) compartmental model for leptospirosis 

transmission dynamics incorporating vaccination as a 

control measure in human. The quantitative analysis of 

the models indicates that the solutions of the model is 

bounded and positive. This study obtained the 

reproduction number ( )ELR for leptospirosis 

transmission dynamics and established that the 

disease-free equilibrium is locally and globally 

asymptotically stable if 1ELR  , and unstable when 

1ELR  . The endemic equilibrium was proved to 

exist, which are locally and globally asymptotically 

stable if 1ELR  , and unstable when 1ELR  . This 

analysis discovered that the model will undergo the 

phenomenon of backward bifurcation for a special 

case when ( 0L  , 1ELR  ) , i.e. DFE coexists with 

endemic equilibrium. The study has shown that when 

there is adequate adherence to environmental health 

public awareness on use of recreational centres and 

routine proper treatment culture cultivated by 

environmental health workers, then, the medium for 

transmitting leptospira will be totally checked. The 

study also indicated that effective control of 

leptospirosis disease in human will result when 

experimental vaccination is confirmed effective. 
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