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1.0 Introduction  

Meningitis is derived from the Greek word “Meninx” 

which means membrane and the medical suffix ”-it is” 

which implies inflammation stated Thus, 

Meningococcal meningitis is a bacterial form of 

Meningitis causing the inflammation of the thin lining 

surrounding the brain and the spinal cord. It could 

results into severe brain damage and death in about 

50% of untreated cases, which was discussed 
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Meningitis is the inflammation of the meninges. This 

disease can be caused by different organisms. Bacteria 

and viruses are the most common causes of meningitis 

by Baba et al. (2020). When these organisms are in the 

cerebrospinal fluid, everything in this immediate area 

will become inflamed. The introduction of bacteria in 

the meninges will almost surely cause meningitis. 

Sometimes the presence of this bacterium is the result 
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of bacteria traveling from an infection in some other 

part of the body, this was mentioned by Asamoah et 

al. (2020). Bacterial meningitis occurs more often than 

viral. In fact more than 80% of all meningitis cases are 

caused by three distinct types of bacteria. The types are 

Neisseria meningitides, haemophilus influenza, and 

Streptococcus pneumonia. Neisseria meningitides is 

the most responsible and most frequent cause of 

Meningococcal meningitis occurrences of the three. 

Bacterial meningitis is the most serious type of 

meningitis. It can lead to death or permanent disability. 

It is a medical emergency. Meningitis affects the 

meninges, the membranes that surround the brain and 

spinal cord and protect the central nervous system 

(CNS), together with the cerebrospinal fluid according 

to Musa et al. (2020). Buonomo et al. (2020) discussed 

extensively in the work that the case of meningitis is 

of great public health importance because it has a high 

morbidity and fatality rate. Various researchers 

performed work on meningitis and found out that the 

effective vaccine against meningitis is the solution for 

the eradication to the disease. Despite the fact that we 

now wish to perform a new research work to critically 

look in to the transmission dynamics and control of the 

disease, so as to come up with best feasible solution in 

controlling meningitis disease. Authors like Novak et 

al. (2019) explain extensively with apprehended 

justification in their contribution towards future 

directions for meningitis surveillance and vaccine 

evaluation in the meningitis belt of sub-Saharan 

Africa. Likewise, Saha (2020), discussed on the 

unearthing the unknown causes of meningitis and 

Irving et al. (2012), proposed a mathematical 

modelling Meningococcal meningitis in the African 

meningitis belt of the continent and part of Africa as 

well as Elmojtaba and Adam (2017), plays a very 

important role on their work on a mathematical model 

for meningitis disease in the west Africa (Nigeria), 

explaining how effective and epidemic among 

children with major shortcomings and economic 

setbacks in medical strategy.  

Blyuss (2016), further stated in his work that epidemic 

meningitis is often caused by Neisseria meningitides 

sero‐group A, B and C (Meningococcus meningitis). 

Novak et al. (2019) also lamented clearly that the so-

called meningitis is common in sub‐saharan Africa. 

Countries like Benin, Burkina Faso, Chad, Niger, 

Nigeria and Mali make up the meningitis belt where 

large scale epidemic occur after every few years. In 

Nigeria, cases can occur all through the year and 

increase during the dry season. An epidemic threshold 

is used to differentiate epidemic emergence from 

simple seasonal rise in incidence. Epidemic meningitis 

diseases caused by the Meningococcal bacterium, 

which is common in Nigeria. In 1996, over 3,386 

people died of meningitis in Nigeria (Saha, 2020). The 

main aim of this research work is to formulate a 

mathematical model for the transmission of 

Meningococcal meningitis and analyze the impact of 

vaccination program and the impact of treatment 

control of the infectious individuals in a population.  

 

2.0 Materials and Methods  

In this section a deterministic mathematical model of 

Susceptible Carrier Infected and Recovered (SCIR) 

was developed to investigate the dynamic of bacterial 

meningitis. A system of ordinary differential is 

equation to be use to investigate the behavior and 

dynamic of bacterial meningitis transmission in a 

population. 

2.1 Model Description and Formulation 

Before developing a model for meningitis it was 

essential to first consider the different classes S-

susceptible, C‐carrier, I‐infected, R‐recovered. A 

proportion of the susceptible class will come in to 

contact with carriers. Individual in the carrier class are 

able to infect others without suffering from the disease 

themselves, they will then become infected. Individual 

in the infected class come directly from the carrier 

class. The recovered class consists of those in the 

infected class that have recovered from the disease or 

died. The change in the susceptible class is given by 

the recruitment rate 𝛬, whining rate of vaccination 𝜔, 

minus the force of infection 
𝛽𝐼𝑆

𝑁
, natural death 𝜇, and 

the rate of vaccination 𝜌. The change in the carrier 

class is given by the force of infection 
𝛽𝐼𝑆

𝑁
, minus 

natural death rate 𝜇, and those individual leaving the 

carrier class to infected class by the disease 

progression rate 𝛾. The change in the infected class is 

given by the disease progression rate 𝛾, and those 

individual leaving the infected class due to natural 

death rate 𝜇, or by the disease induce death rate 𝜎 (that 

is death by infection) and those individual that have 

received treatment and recovered by the rate 𝜏, And the 

change in the recovered class is given by the rate of 

vaccination 𝜌, the rate of treatment from the infected 

class 𝜏, and those individual leaving the recovered 

class by whining rate of vaccination 𝜔, to susceptible 

class and the natural death rate 

𝜇 (Paireau 𝑒𝑡 𝑎𝑙. ,2016). 
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Figure 1:   Schematic Diagram of The Model 

 

These are the equations represented by the model 
𝑑𝑆

𝑑𝑡
= 𝛬 −

𝛽𝐼𝑆

𝑁
+ 𝜔𝑅 − 𝜇𝑆 − 𝜌𝑆                    (1) 

𝑑𝐶

𝑑𝑡
=

𝛽𝐼𝑆

𝑁
− 𝛾𝐶 − 𝜇𝐶                              (2) 

𝑑𝐼

𝑑𝑡
= 𝛾𝐶 − 𝜏𝐼 − 𝛿𝐼 − 𝜇𝐼                           (3) 

𝑑𝑅

𝑑𝑡
= 𝜏𝐼 + 𝜌𝑆 − 𝜔𝑅 − 𝜇𝑅                       (4) 

 

2.2 Definition of Parameters and Compartment 

S: Susceptible class. 

C: Carrier class. 

I: Infected class. 

R: Recovered class. 

𝛬: Rate of recruitment. 

𝛽: Rate of transmission. 

𝛾: Rate of progression. 

𝜎: Disease induce rate. 

𝜏: Rate of treatment. 

𝜌: Vaccination rate. 

𝜔: Whining rate. 

𝜇: Natural death rate. 

N: Total population. 

Simplifying the above equations, we have, 

 

The equation now becomes 

 2.3 Invariant Region 

Consider the region 

Now let 

𝐾1 = 𝜇 + 𝜌 (𝔦) 
𝑘2 = 𝛾 + 𝜇 (ii) 

𝑘3 = 𝜏 + 𝛿 + 𝜇 (iii) 
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𝑘4 = 𝜔 + 𝜇  (iv) 

 
𝑑𝑆

𝑑𝑡
= 𝛬 −

𝛽𝐼𝑆

𝑁
+ 𝜔𝑅 − 𝐾1𝑆                   (5) 

𝑑𝐶

𝑑𝑡
=

𝛽𝐼𝑆

𝑁
− 𝑘2𝐶                           (6) 

𝑑𝐼

𝑑𝑡
= 𝛾𝐶 − 𝑘3𝐼                               (7) 

𝑑𝑅

𝑑𝑡
= 𝜏𝐼 + 𝜌𝑆 − 𝑘4𝑅                          (8) 

𝐷 = {(𝑆, 𝐶, 𝐼, 𝑅)𝜀𝑅+
4 : 𝑁 ≤

𝛬

𝜇
}  

It is positively invariant and attracts all positive solutions of the model. 

Theorem: The region D is positively invariant for the model. 

Proof: Let 𝑁 = 𝑆 + 𝐶 + 𝐼 + 𝑅 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐶

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
                             (9) 

𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑆 − 𝜇𝐶 − 𝛿𝐼 − 𝜇𝐼 − 𝜇𝑅                   (10) 

𝑑𝑁

𝑑𝑡
= 𝛬 − (𝑆 + 𝐶 + 𝐼 + 𝑅)𝜇 − 𝜎𝐼                     (11) 

Since 𝑁 = 𝑆 + 𝐶 + 𝐼 + 𝑅 Now we have, 
𝑑𝑁

𝑑𝑡
= 𝛬 − 𝑁𝜇 − 𝛿𝐼                                  (12) 

𝑑𝑁

𝑑𝑡
= 𝛬 − 𝑁𝜇                                      (13) 

By using method of integrating factor 

𝐼𝐹 = 𝑒∫𝜇𝑑𝑡 ≤ 𝑒𝜇𝑡 
𝑑

𝑑𝑡
(𝑁 ⋅ 𝐼𝐹) ≤ 𝛬 ⋅ I𝐹                              (14)  

d(𝑁 ⋅ 𝐼𝐹) ≤ (𝛬 ⋅ IF)dt                            (15) 

∫ d (𝑁 ⋅ 𝐼𝐹) ≤ ∫(𝛬 ⋅ IF) dt                         (16)  

𝑁 ⋅ 𝐼𝐹 ≤ ∫(𝛬 ⋅ IF) dt                              (17) 

[𝑁𝑒𝜇𝑡]0
𝑡 ≤ ∫(𝛬𝑒𝜇𝑡) dt                               (18) 

[𝑁𝑒𝜇𝑡]0
𝑡 ≤ [

𝛬

𝜇
𝑒𝜇𝑡]

0

𝑡

                                  (19) 

𝑁(𝑡)𝑒𝜇𝑡 − 𝑁(0)𝑒0 ≤
𝛬

𝜇
𝑒𝜇𝑡 −

𝛬

𝜇
𝑒0                      (20) 

𝑁(𝑡)𝑒𝜇𝑡 − 𝑁(0) ≤
𝛬

𝜇
𝑒𝜇𝑡 −

𝛬

𝜇
                           (21) 

𝑁(𝑡)𝑒𝜇𝑡 ≤ 𝑁(0) +
𝛬

𝜇
𝑒𝜇𝑡 −

𝛬

𝜇
                          (22) 

Multiplying through by 𝑒−𝜇𝑡 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
𝛬

𝜇
−

𝛬

𝜇
𝑒−𝜇𝑡                          (23) 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
𝛬

𝜇
(1 − 𝑒−𝜇𝑡) at t > 0                  (24) 

𝑁(𝑡) ≤ 0 +
𝛬

𝜇
(1 − 0)                                   (25) 

𝑁(𝑡) ≤
𝛬

𝜇
                                              (26) 

If  

𝑁(0) ≤
𝛬

𝜇
, then 𝑁(𝑡) ≤

𝛬

𝜇
. 

Hence the region D is positively invariant and attracts all the solution in ℝ+
4  so that no solution path leaves through 

any boundary D. 

 

2.4 Basic Reproduction Number (𝕽𝒐) 

The basic reproduction number is the number of secondary infections cause by the average infectious individual. 

Also the reproduction number is the threshold parameter that governs the spread of a disease. To obtain the basic 

reproduction number we let the variable 

𝜒 = (
𝑑𝑆

𝑑𝑡

𝑑𝐶

𝑑𝑡

𝑑𝐼

𝑑𝑡

𝑑𝑅

𝑑𝑡
) . 

Let 𝐹𝑖(𝑥) represent the rate at which new infections appear. While 𝑣𝑖
+(𝑥) and 𝑣𝑖

−(𝑥) are the rate at which 

individuals enter and leave each class. 
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𝐹𝑖(𝑥) = (

−
𝑁
0
)                                             (27) 

𝑉𝑖(𝑥) = (
𝐾2𝐶

−𝛾𝐶 + 𝑘3𝐼
)                                      (28) 

𝐹𝑖(𝑥) = {

𝜕𝐹1

𝜕𝐶

𝜕𝐹1

𝜕𝐼
𝜕𝐹2

𝜕𝐶

𝜕𝐹2

𝜕𝐼

} 

                                                       𝐹 = {0
𝛽𝑠

𝑁

0 0
}                                       (29)     

                                                      V = {
𝐾2 0
−𝛾 𝑘3

}                                       (30) 

𝑉𝑖(𝑥) = {

𝜕𝑉1

𝜕𝐶

𝜕𝑉1

𝜕𝐼
𝜕𝑉2

𝜕𝐶

𝜕𝑉2

𝜕𝐼

} 

Our reproduction number is represented by 𝑅𝑜 = 𝜌(𝐹𝑉−1) 

 

𝑉−1 =
1

𝑑𝑒𝑡𝑉
𝑉𝑇 Where   𝑉𝑇 = [ 

𝑘3 0
𝛾 𝐾2

]                       (31) 

  

𝑉−1 =
1

𝐾2𝑘3
{
𝑘3 0
𝛾 𝐾2

} = {

𝑘3

𝐾2𝑘3
0

𝛾

𝐾2𝑘3

𝐾2

𝐾2𝑘3

}                              (32) 

𝑑𝑒𝑡𝑉 = 𝐾2𝑘3                                                   (33) 

 

(𝐹𝑉−1) = ⦋0
𝛽𝑠

𝑁

0 0
] ⦋

1

𝐾2
0

𝛾

𝐾2𝑘3

1

𝑘3

]                                  (34) 

 (𝐹𝑉−1) = [
𝛽𝑆

𝑁𝑘3,0
]                                            (35) 

Now we the eigenvalues |(𝐹𝑉−1) − 𝜆𝐼| = 0 we have, 

[ 0 − 𝜆
𝛽𝑆

𝑁𝑘3
] = 0                                                                                                        (36)  

(
𝛽𝑆𝛾

𝑁𝐾2𝑘3
− 𝜆) (0 − 𝜆) = 0                                       (37) 

‐
𝛽𝑆𝛾𝜆

𝑁𝐾2𝑘3
+ 𝜆2 = 0                                             (38) 

𝜆 (𝜆 −
𝛽𝑆𝛾

𝑁𝐾2𝑘3
) = 0                                          (39) 

=> 𝜆1 = 0 And 𝜆2 =
𝛽𝑆𝛾

𝑁𝐾2𝑘3
                                   (40) 

Therefore the value 
𝛽𝑆𝛾

𝑁𝐾2𝑘3
 is our ℜ0 and is the effective reproduction number since there is the presence of control 

strategies. 

 

2.5 Existence of Endemic Equilibrium Point (EEP) 

Let 𝜆 =
𝛽𝐼

𝑁
 and 

Setting system (5), (6), (7) and (8) to zero, the system becomes 

𝛬 − 𝜆𝑆 + 𝜔𝑅 − 𝐾1𝑆 = 0                            (41) 

𝜆𝑆 − 𝑘2𝐶 = 0                                       (42) 

𝛾𝐶 − 𝑘3𝐼 = 0                                        (43) 

𝜏𝐼 + 𝜌𝑆 − 𝑘4𝑅 = 0                                 (44) 

From system (41), (42) and (43) we have 

𝐶 =
𝜆𝑆

𝐾2
                                            (45) 

𝐼 =
𝛾𝐶

𝐾3
                                             (46) 
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𝑅 =
𝜏𝐼+𝜌𝑆

𝐾4
                                           (47) 

Substitute system (45) in (46) we have 

𝐼 =
𝛾(

𝜆𝑆

𝐾2
)

𝐾3
=

𝛾𝜆𝑆

𝐾2𝐾3
                                    (48) 

Substitute system (48) in (47) we have 

 

𝑅 =
𝜏 (

𝛾𝜆𝑆
𝐾2𝐾3

) + 𝜌𝑆

𝐾4

=
𝜏𝛾𝜆𝑆 + 𝐾2𝐾3𝜌𝑆

𝐾4𝐾2𝐾3

=
(𝜏𝛾𝜆 + 𝐾2𝐾3𝜌)𝑆

𝐾2𝐾3𝐾4

 

𝑅 =
(𝜏𝛾𝜆+𝐾2𝐾3𝜌)𝑆

𝐾2𝐾3𝐾4
                                          (49) 

From system (41) we can find S, 
𝛬 + 𝜔𝑅 − (𝜆 + 𝐾1)𝑆 = 0 

𝑆 =
𝛬+𝜔𝑅

(𝜆+𝐾1)
                                               (50) 

 

Substitute system (49) in (50) to solve for S 

𝑆 =
𝛬+𝜔(

(𝜏𝛾𝜆+𝐾2𝐾3𝜌)𝑆

𝐾2𝐾3𝐾4
)

(𝜆+𝐾1)
                                       (51) 

(𝜆 + 𝐾1)𝑆 = 𝛬 + (
𝜏𝛾𝜆+𝐾2𝐾3𝜌

𝐾2𝐾3𝐾4
)𝜔𝑆                           (52) 

((𝜆 + 𝐾1) − (
𝜏𝛾𝜆+𝐾2𝐾3𝜌

𝐾2𝐾3𝐾4
)𝜔) 𝑆 = 𝛬                         (53) 

𝑆 =
𝛬

𝜆𝐾2𝐾3𝐾4+𝐾1𝐾2𝐾3𝐾4−𝜏𝛾𝜆𝜔−𝐾2𝐾3𝜌𝜔

𝐾2𝐾3𝐾4

                     (54) 

𝑆 =
𝛬𝐾2𝐾3𝐾4

𝜆𝐾2𝐾3𝐾4+𝐾1𝐾2𝐾3𝐾4−𝜏𝛾𝜆𝜔−𝐾2𝐾3𝜌𝜔
                    (55) 

𝑆 =
𝛬𝐾2𝐾3𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔
                           (56) 

 

Substitute system (56) in (45) to solve for C 

𝐶 =
𝜆𝑆

𝐾2
                                                   (57) 

𝐶 =
𝜆

𝐾2
(

𝛬𝐾2𝐾3𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔
)                            (58) 

𝐶 = (
𝛬𝜆𝐾3𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔
)                              (59) 

Substitute system (59) in (46) to solve for I 

𝐼 =
𝛾𝐶

𝐾3
                                                   (60) 

𝐼 =
𝛾

𝐾3
(

𝛬𝜆𝐾3𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔
)                            (61) 

𝐼 = (
𝛬𝜆𝛾𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔
)                              (62) 

Substitute system (56), in (49) to solve for R 

𝑅 =
(𝜏𝛾𝜆+𝐾2𝐾3𝜌)𝑆

𝐾2𝐾3𝐾4
                                           (49) 

𝑅 =
(𝜏𝛾𝜆+𝐾2𝐾3𝜌)

𝐾2𝐾3𝐾4
(

𝛬𝐾2𝐾3𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔
)                      (63) 

𝑅 =
𝛬(𝜏𝛾𝜆+𝐾2𝐾3𝜌)

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔
                                 (64) 

 

{

𝑆
𝐶
𝐼
𝑅

} = 

[
 
 
 
 
 
 

𝛬𝐾2𝐾3𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔

𝛬𝜆𝐾3𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔

𝛬𝜆𝛾𝐾4

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔

𝛬(𝜏𝛾𝜆+𝐾2𝐾3𝜌)

𝐾2𝐾3(𝜆𝐾4+𝐾1𝐾4−𝜌𝜔)−𝜏𝛾𝜆𝜔]
 
 
 
 
 
 

                                                                            (65)  

 

The above system (95) is the required endemic equilibrium point (EEP). 
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2.6 Disease Free Equilibrium (DFE) 

In the equilibrium state we let 
𝑑𝑆

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

Which is the same as system (8), (9),(20) and (21) 

𝛬 −
𝛽𝐼𝑆

𝑁
+ 𝜔𝑅 − 𝐾1𝑆 = 0                               

𝛽𝐼𝑆

𝑁
− 𝑘2𝐶 = 0                                       

𝛾𝐶 − 𝑘3𝐼 = 0                                        

𝜏𝐼 + 𝜌𝑆 − 𝑘4𝑅 = 0                                   

From system (9) we have 
𝛽𝐼𝑆−𝑁𝑘2𝐶

𝑁
= 0 => 𝛽𝐼𝑆 − 𝑁𝑘2𝐶 = 0                         (66) 

 

𝛽𝐼𝑆 = 𝑁𝑘2𝐶 => 𝑆 =
𝑁𝑘2𝐶

𝛽𝐼
                                 (67) 

From system (20) we have 

𝛾𝐶 − 𝑘3𝐼 = 0 => 𝑘3𝐼 = 𝛾𝐶                               (68) 

𝐼 =
𝛾𝐶

𝑘3
                                                   (69) 

Now substitute system (69) in (67) we have 

𝑆 =
𝑁𝑘2𝐶

𝛽(
𝛾𝐶

𝑘3
)
=

𝑁𝑘2𝐶

𝛽𝛾𝐶𝑘3
                                        (70) 

𝑆 =
𝑁𝑘2

𝛽𝛾𝑘3
                                            (71) 

Substitute system (69) and (71) in (9) to find C 
𝛽𝐼𝑆

𝑁
− 𝑘2𝐶 = 0                                           (72) 

𝛽(
𝛾𝐶

𝑘3
)(

𝑁𝑘2
𝛽𝛾𝑘3

)

𝑁
− 𝑘2𝐶 = 0                            (73) 

𝛽(
𝛾𝐶

𝑘3
)(

𝑁𝑘2
𝛽𝛾𝑘3

)−𝑁𝑘2𝐶

𝑁
= 0 =>

𝑁𝛾𝐶𝑘2

𝛾𝐾3
2 − 𝑁𝑘2𝐶 = 0           (74) 

𝑁𝛾𝐶𝑘2−𝛾𝐾3
2𝑁𝑘2𝐶

𝛾𝐾3
2 = 0                                 (75) 

𝑁𝛾𝐶𝑘2 − 𝛾𝐾3
2𝑁𝑘2𝐶 = 0                                    (76) 

C(𝑁𝛾𝑘2 − 𝛾𝐾3
2𝑁𝑘2) = 0                                   (77) 

By dividing through by 𝑁𝛾𝑘2 − 𝛾𝐾3
2𝑁𝑘2 we have 

𝐶 = 0                                                     (78)  

From system (69) we substitute C = 0 to fmd I 

𝐼 =
𝛾𝐶

𝑘3
                                                         

We have that 𝐼 = 0 

𝐼 = 0                                             (79) 

From system (9) we can find R by substituting system (71) and (9) 

𝜏𝐼 + 𝜌𝑆 − 𝑘4𝑅 = 0                                  (80) 

𝑅 =
𝜏𝐼+𝜌𝑆

𝑘4
                                   (81) 

𝑅 =
0+𝜌(

𝑁𝑘2
𝛽𝛾𝑘3

)

𝑘4
                                  (82) 

𝑅 =

𝜌𝑁𝑘2
𝛽𝛾𝑘3

𝑘4
                                                                                                                  (83)  

𝑅 =
𝜌𝑁𝑘2𝑘4

𝛽𝛾𝑘3
                                     (84) 

 

{

𝑆∗

𝐶∗

𝐼∗

𝑅∗

} = 

[
 
 
 
 

𝑁𝑘2

𝛽𝛾𝑘3

0
0

𝜌𝑁𝑘2𝑘4

𝛽𝛾𝑘3 ]
 
 
 
 

                                       (85) 

The above system (85) is the required disease free equilibrium point (DFE). 
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 2.7 Local Stability Analysis of Disease Free Equilibrium (DFE) 

Theorem: the disease free equilibrium point is locally asymptotically stable if ℜ0 < 1 and unstable if ℜ0 > 1. 
Proof: to proof this theorem we first obtain the Jacobean matrix of the model equations at the disease free 

equilibrium. 

Let 
𝑑𝑆

𝑑𝑡
= 𝛬 −

𝛽𝐼𝑆

𝑁
+ 𝜔𝑅 − 𝐾1𝑆 = 𝑓1                           (86) 

𝑑𝐶

𝑑𝑡
=

𝛽𝐼𝑆

𝑁
− 𝑘2𝐶 = 𝑓2                                    (87) 

𝑑𝐼

𝑑𝑡
= 𝛾𝐶 − 𝑘3𝐼 = 𝑓3                                     (88) 

𝑑𝑅

𝑑𝑡
= 𝜏𝐼 + 𝜌𝑆 − 𝑘4𝑅 = 𝑓4                                (89) 

The Jacobean matrix for the model equation is given by 

𝐽(𝑆, 𝐶, 𝐼, 𝑅) = 

[
 
 
 
 −

𝛽𝐼

𝑁
− 𝐾1 0 0 𝜔

𝛽𝐼

𝑁
−𝐾2 0 0

0 𝛾 −𝐾3 0
𝜌 0 𝜏 −𝐾4]

 
 
 
 

                  (90) 

 

At DFE we have 

[

−𝐾1 0 0 𝜔
0 −𝐾2 0 0
0 𝛾 −𝐾3 0
𝜌 0 𝜏 −𝐾4

]                                     (91) 

 

To find the eigenvalues we have |𝐽 − 𝜆𝐼| = 0 

  [

−𝐾1 − 𝜆 0 0 𝜔
0 −𝐾2 − 𝜆 0 0
0 𝛾 −𝐾3 − 𝜆 0
𝜌 0 𝜏 −𝐾4 − 𝜆

]                         (92) 

 

(−𝐾1 − 𝜆) |

−𝐾2 − 𝜆 0 0
𝛾 −𝐾3 − 𝜆 0
0 𝜏 −𝐾4 − 𝜆

| − 0 + 0 + (𝜔) |

0 −𝐾2 − 𝜆 0
0 𝛾 −𝐾3 − 𝜆
𝜌 0 𝜏

| = 0                

        (93) 

 

(−𝐾1 − 𝜆)[(−𝐾2 − 𝜆)((−𝐾3 − 𝜆)(−𝐾4 − 𝜆) − 0)] − (𝜔)[(−𝐾2 − 𝜆)((0 − 𝜌(−𝐾3 − 𝜆)] = 0       

     (94) 

(−𝐾1 − 𝜆)[(−𝐾2 − 𝜆)(−𝐾3 − 𝜆)(−𝐾4 − 𝜆)] + (𝜔𝜌)[(−𝐾2 − 𝜆)(−𝐾3 − 𝜆)] = 0                      

                                                                                       (95) 

(−𝐾2 − 𝜆)(−𝐾3 − 𝜆)[(−𝐾1 − 𝜆)(−𝐾4 − 𝜆) + 𝜔𝜌] = 0                        (96) 

=> 𝜆1 = −𝐾2 < 0, 𝜆2 = −𝐾3 < 0                                                                 (97) 

The remaining eigenvalues can be resolved from: 

𝐾1𝐾4 + 𝐾1𝜆 + 𝐾4𝜆 + 𝜆2 + 𝜔𝜌 = 0                          (98) 

𝜆2 + (𝐾1 + 𝐾4)𝜆 + 𝐾1𝐾4 + 𝜔𝜌 = 0                         (99) 

𝜌(𝜆) = 𝜆2 + (𝐾1 + 𝐾4)𝜆 + 𝐾1𝐾4 + 𝜔𝜌 = 0                                (100) 

Using Routh‐Horwitz criterion, 

𝜌(𝜆) = 𝑎0𝜆
2 + 𝑎1𝜆 + 𝑎2                                   (101) 

𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0                                    (102) 

Compare with system (100) we have, 

𝑎0 = 1 > 0,                                             (103) 

𝑎1 = 𝐾1 + 𝐾4 > 0,                                         (104) 

𝑎2 = 𝐾1𝐾4 + 𝜔𝜌 > 0                                     (105) 

From Rorth‐Horwitz criterion for 𝜌(𝜆) to have negative root all the coefficients must be greater than zero. 

𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0 

Therefore 𝜆3 < 0 and 𝜆4 < 0. 
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Now we conclude that the DFE is locally asymptotically stable, since 

𝜆1 < 0, 
𝜆2 < 0, 
𝜆3 < 0 

𝜆4 < 0. 
Hence, the disease free equilibrium (DFE) is locally asymptotically stable. 

 

2.8 Numerical Simulations 

The model equations (1) to (4) were numerically 

simulated using the defined parameters presented in 

the table of variables and parameters (table 1.0) we 

will vary the key parameters to investigate the impact 

of varying infection rate on the number of infected 

individuals by different rate of treatment and impact of 

susceptible individuals by different rate of vaccination 

to study the transmission dynamics of bacterial 

meningitis inspired by Elmojtaba and Adam (2017). 

 

3.0 Results and Discussion 

     
Table 1:    Variables and Parameter Values 

PARAMETERS DIFINITION VALUES REFERENCE 

𝛬 

𝜇 

𝛽 

𝛾 

𝜏 

            δ 

𝜌 

𝜔 

S 

C 

            I 

R 

Rate of recruitment 

Natural death 

Rate of transmission 

Rate of progression 

Rate of treatment 

Disease induced rate 

R vaccination 

Whining rate 

Susceptible class 

Carriers class 

Infected class 

Recovered class 

100 

0.02 

0.88 

0.52 

0.9 

0.5 

0.85 

0.04 

700 

250 

40 

10 

Assumed 

C.L. Trotter 2010 

K.Vereen 2008 

C.L. Trotter 2012 

Assumed 

WHO 2010 

M. J. 𝛤. Martinez 2013. 

C.L. Trotter, 2012 

Assumed 

Assumed 

Assumed 

Assumed 

 

Table 2: Time rate and Susceptible class 

     T 0 2 4 6 8 10 

S 0 12 25 50 200 700 

 

 
 

Figure 1: Susceptible class against time 
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This figure above show that the susceptible individuals reduce due to vaccination and the awareness of the disease to 

the population. 

From model 1, we now solve for the susceptible individuals for the period of ten years to get another results. 

 From equation 1 
𝑑𝑠

𝑑𝑡
= 𝛬 −

𝛽𝐼𝑆

𝑁
+ 𝜔𝑅 − (𝜇 + 𝜌)𝑆 

Integrating we get 

∫𝑑𝑠 = ∫ (𝛬 −
𝛽𝐼𝑆

𝑁
+ 𝜔𝑅 − (𝜇 + 𝜌)𝑆)𝑑𝑡  

S(t)=[Λ-
𝛽𝐼𝑆

𝑁
+ 𝜔𝑅 − (𝜇 + 𝜌)𝑆)]𝑡 

t=0 

s(0)=[100-
0.88(40)(0)

100
+ 0.04(0) − (0.02 + 0.85)0] ∗ 0 

    =[100-
0

1000
+ 0 − (0.87)0] ∗ 0 

    =0 

When t=2 

𝑠(2) = [100 −
0.88(100)(12)

1000
+ 0.04(60) − (0.02 + 0.85)12] ∗ 2 

     = [100 −
105.6

1000
+ 2.4 − (0.87)12] ∗ 12 

     = [100 − 0.1056 + 2.4 − 10.44] ∗ 12 

     = 1102.2528 

𝑠(4) = [100 −
0.88(8)(25)

1000
+ 0.04(80) − (0.02 + 0.85)25] ∗ 4 

     = [100 =
176

1000
+ 3.2 − (0.87)25] ∗ 4 

     = [100 − 0.176 + 3.2 − 21.75] ∗ 4 

     = 325.096 

𝑠(6) = [100 −
0.88(6)(50)

1000
+ 0.04(100) − (0.02 + 0.85)50] ∗ 6 

     = [100 − 0.264 + 4 − 43] ∗ 6 

     = 364.416 

𝑠(8) = [100 −
0.88(4)(200)

1000
+ 0.04(120) − (0.02 + 0.85)200] ∗ 8 

     = [100 − 0.704 + 4.8 − 170] ∗ 8 

     = −1255.904 

𝑠(10) = [100 −
0.88(2)(700)

1000
+ 0.04(140) − (0.02 + 0.85)700] ∗ 10 

     = [100 − 1.232 + 5.6 − (0.87)700] ∗ 10 

     = [−504.632] ∗ 10 

     = −5046.32 
Based on the values we got from the above solution, we can see that at the initial years of treatment that is from (0, 

2, 4, 6) is positive values to shows that the treatment of the susceptible individuals is not stable, and also after two 

years that is (8, 10,..) is negative values is also to shows that the susceptible individuals are responding to treatment 

at a stable state. (Although there are chances of reinfection). 

 

Table 3: Population Carriers 

T 0 2 4 6 8 10 

C 240 220 200 180 160 140 

 

The figure below shows that the population of carriers class individual decreases with respect to time. 
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Figure 2: Carriers’ class against time 

 

 
𝑑𝑐

𝑑𝑡
=

𝛽𝐼𝑆

𝑁
− (𝛾 + 𝜇)𝑐 

∫
𝑑𝑐

𝑑𝑡
= ∫

𝛽𝐼𝑆

𝑁
− (𝛾 + 𝜇)𝐶 

∫𝑑𝑐 = ∫[
𝛽𝐼𝑆

𝑁
− (𝛾 + 𝜇)𝐶]𝑑𝑡 

𝑐(𝑡) = [
𝛽𝐼𝑆

𝑁
− (𝛾 + 𝜇)𝐶] 𝑑𝑡 

 

𝑐(𝑡) = [
𝛽𝐼𝑆

𝑁
− (𝛾 + 𝜇)𝐶] 𝑑𝑡 

When 𝑡 = 0 

𝑐(0) = [
0.88(40)(0)

100
− (0.52 + 0.02)240] ∗ 0 

     = [0 − 129.6] ∗ 0 

      = 0 

When 𝑡 = 2 

𝑐(2) = [
0.88(10)(12)

1000
− (0.52 − 0.02)220] ∗ 2 

     = [0.1056 − 118.8] ∗ 2 

     = 235.7888 

When 𝑡 = 4 

𝑐(4) = [
0.88(8)(25)

1000
− (0.52 + 0.02)200] ∗ 4 

     = [0.176 − 108] ∗ 4 

     = −31.296 

When 𝑡 = 6 

140

160

180

200

220

240

0 1 2 3 4 5 6 7 8 9 10
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𝑐(6) = [
0.88(6)(50)

1000
− (0.52 + 0.02)180] ∗ 6 

     = [0.264 − 97.2] ∗ 6 

     = −581.616 

When 𝑡 = 8 

𝑐(8) = [
0.88(4)(200)

1000
− (0.52 + 0.02(160] ∗ 8 

     = [0.704 − 86.4] ∗ 8 

     = −685.568 

When 𝑡 = 10 

𝑐(10) = [
0.88(2)(700)

1000
− (0.52 + 0.02)140] ∗ 10 

    = [1.232 − 75.6] ∗ 10 

         = −743.68 
The results we obtained from the carrier group has a unique character which increases from the years (0 - 2), but 

later starts to decrease with the time due to treatment 

 

This figure show that the population of infected individuals decays with respect to time due to treatment which 

results of progression into recovered compartment. 

 

Table 3: Population of infected individuals  

T 0 2 4 6 8 10 

I 40 10 8 6 4 2 

 

         
 

Figure 3:  Infected class against time 

   

From the above model we the values. We obtain to shows the effect of varying treatment rate on the population 

infected and their progression to recovered compartment. 
𝑑𝐼

𝑑𝑡
= 𝛾𝑐 − (𝜏 + 𝛿 + 𝜇)𝐼 

∫
𝑑𝐼

𝑑𝑡
= ∫[𝛾𝑐 − (𝜏 +𝛿 + 𝜇)]𝑑𝑡 

0

10

20

30

40

0 2 4 6 8 10
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∫𝑑𝑡 =∫[𝛾𝑐 − (𝜏 + 𝛿 + 𝜇)𝐼]𝑑𝑡 

𝐼(𝑡) = [𝑟𝑐 − (𝜏 + 𝛿 + 𝜇)𝐼]𝑡 

When 𝑡 = 0 

𝐼(𝑡) = [𝛾𝑐 − (𝜏 + 𝛿 + 𝜇)𝐼]𝑡 

𝐼(0) = [0.52(240) − (0.9 + 0.5 + 0.02)40] ∗ 0 

= [124.8 − 56.8] ∗ 0 

= 68 ∗ 0 

    = 0 

When 𝑡 = 2 

𝐼(2) = [0.52(220) − (0.9 + 0.5 + 0.02)10] ∗ 2 

     = [114.4 − 1.6] ∗ 2 

     = 225.6 

When 𝑡 = 4 

𝐼(4) = [0.52(200) − (0.9 + 0.5 + 0.02)8] ∗ 4 

     = [104 − 11.36] ∗ 4 

     = 370.56 

When 𝑡 = 6 

𝐼(6) = [0.52(180) − (0.9 + 0.5 + 0.02)6] ∗ 6 

     = [93.6 − 8.52] ∗ 6 

     = 510.48 

When 𝑡 = 8 

𝐼(8) = [0.52(160) − (0.9 + 0.5 + 0.02)4] ∗ 8 

     = [83.2 − 5.68) ∗ 8 

     = 620.16 

When 𝑡 = 10 

𝐼(10) = [0.52(140) − (0.9 + 0.5 + 0.02)2] ∗ 10 

      = [72.8 − 2.84] ∗ 10 

      = 699.6 

From the above model we the values. We obtain to shows the effect of varying treatment rate on the population 

infected and their progression to recovered compartment. 

This figure shows that the population of recovered individuals increase with time as we varies treatment and 

vaccination rate.  

 

Table 3: Population of recovered individuals 

T 0 2 4 6 8 10 

R 0 60 80 100 120 140 

 

 

 
 

Figure 4:  Recovered class against time 
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From the equation we have 
𝑑𝑅

𝑑𝑡
= 𝜏𝐼 + 𝜌𝑆 − (𝜔 + 𝜇)𝑅 

∫
𝑑𝑅

𝑑𝑡
= ∫[𝜏𝐼 + 𝜌𝑆 − (𝜔 + 𝜇)𝑅]𝜇 

∫𝑑𝑅 = ∫[𝜏𝐼 + 𝜌𝑆 − (𝜔 + 𝜇)𝑅]𝑑𝑡 

𝑅(𝑡) = [𝜏𝐼 + 𝜌𝑆 − (𝜔 + 𝜇)𝑅]𝑡 

When 𝑡 = 0 

𝑅(0) = [0.9(10) + 0.85(0) − (0.04 + 0.02)0] ∗ 0 

     = [36 + 0 − 0] ∗ 0 

     = 0 

When 𝑡 = 2 

𝑅(2) = [0.9(10) + 0.85(10) − (0.04 + 0.02)60] ∗ 2 

     = [9 + 10.2 − 3.6] ∗ 2 

     = [15.6] ∗ 2 

     = 31.2 

When 𝑡 = 4 

𝑅(4) = [0.9(8) + 0.85(25) − (0.04 + 0.02)80] ∗ 4 

     = [7.2 + 21.25 − 4.8] ∗ 4 

     = 94.6 

When 𝑡 = 6 

𝑅(6) = [0.9(6) + 0,85(50) − (0.04 + 0.02)100] ∗ 6 

     = [5.4 + 42.5 − 6] ∗ 6 

     = 251.4 

When 𝑡 = 8 

𝑅(8) = [0.9(4) + 0.85(200) − (0.04 + 0.02)100] ∗ 8 

     = [3.6 + 170 − 7.2] ∗ 8 

     = 1331.2 

When 𝑡 = 10 

𝑅(10) = [0.9(2) + 0.85(700) − [0.04 + 0.02)140] ∗ 10 

     = [1.8 + 595 − 8.4) ∗ 10 

     = 5884 

According to the values obtained in this model we can see that the population of infected individuals increase for a 

while and then later decrease after some time by undergoing treatment. 

 

 
Figure 5: Four compartments against time 

 

https://doi.org/10.54117/gjpas.v2i2.19


Available: DOI: https://doi.org/10.54117/gjpas.v2i2.19  Research article 

127 
GJPAS/Volume 2/Issue 2/Jun – Dec/2023 

This figure show that the population of infected individuals decreases with time due to treatment, the susceptible 

population is reduce due to vaccination rate, the carriers population is also reduce, while the recovered population 

will increase higher due to treatment and vaccination strategies. 

 

 
        0         2         4         6        8        10 

Figure 6: Effect of varying treatment rate on the infected compartment 

 

The above figure shows that the higher the rate of treatment, the lower the number of infected individuals. This 

shows that treatment plays a vital role in reducing the disease burden in a population. 

 

Recovered Compartment 
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Figure 7: Effect of varying treatment rate on the recovered compartment 
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Figure 8: Effect of varying vaccination rate on susceptible compartment 

 

The above figure shows that the higher the vaccination rate, the lower the number of susceptible individuals. This is 

because when susceptible individual progress to recovered compartment. 
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Figure 9:  Effect of varying vaccination rate on recovered compartment 

 

The above figure shows that the population of recovered class increases by the higher rate of vaccination. This 

shows that vaccination plays a vital role in the control and elimination of the disease in a population. 
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4.0 Conclusion 

In this study, a mathematical model for the dynamics 

of bacterial meningitis was developed and designed to 

investigate the transmission dynamics of meningitis in 

a population. The invariant region, basic reproduction 

number, endemic equilibrium point (EEP), and local 

stability analysis of the disease free equilibrium (DFE) 

were analyzed. The basic reproduction number was 

obtained using the Jacobean matrix method. The 

analysis revealed that the disease free equilibrium is 

locally asymptotically stable for 𝑅0 < 1. and the 

endemic equilibrium point is locally asymptotically 

stable for𝑅0 > 1. Most likeable of this research is that 

the research work shows that the rate at which 

treatment and vaccination rate increases to the higher 

value the recovered compartment increases to the peak 

point. This means treatment and vaccination has an 

impact on reducing the case of bacterial meningitis in 

a population. Now we conclude that a high infection 

transmission rate requires a high vaccine and treatment 

rate, which is similar to the findings of Vereen, (2008) 

on the effect of vaccination against meningitis. 
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