
Available: DOI: https://doi.org/10.54117/3x38yh88  Research article 

1 
GJPAS/Volume 4/Issue 1/Jan – June/2025 

 

 

Gadau Journal of Pure and Allied Sciences 
Gadau J Pure Alli Sci, 4(2): 1-9 (2025) 

ISSN: 2955-1722 
DOI: https://doi.org/10.54117/3x38yh88 

 

A Deep Learning-Based Predictive Model for Pattern 

Recognition and Classification of Cancerous Skin 
 

Adeleke Raheem Ajiboye1, Shefiu Olusegun Ganiyu2, Ikeola Suhurat Olatinwo3, Ganiyyat 

Bolanle Balogun4. 
1,2Department of Computer Science, School of Mathematics and Computing 

Kampala International University, Uganda. 

 
3,4Department of Computer Science, Faculty of Communication and Information Sciences 

University of Ilorin, Ilorin, Nigeria. 
 

*Correspondence: ajibraheem@kiu.ac.ug 

 

 

1.0  Introduction 

The skin is considered one of the body’s largest organs 

(Yousef, et al., 2017). Composed of ectodermal tissue 

and potentially consisting of up to seven distinct layers 

(Brunke et al., 2022), it plays a crucial role in 

safeguarding the muscles, bones, ligaments, and 

internal organs. In addition to its protective function, 

the skin acts as a barrier against environmental 

elements, helps regulate body temperature, and 
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enables us to perceive sensations such as touch, 

warmth, and cold. 

Recent progress in deep learning, which is a subfield 

of machine learning has led to impressive 

breakthroughs in image recognition, particularly 

within medical imaging. Convolutional Neural 

Networks (CNNs), in particular, have shown strong 

capabilities in analyzing dermoscopic images by 

identifying subtle features and patterns that help 

distinguish between malignant and benign skin 
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lesions. Leveraging these strengths, this study 

proposes a deep learning-based model designed to 

detect and classify cancerous skin lesions with 

improved accuracy. 

 

Ultraviolet (UV) radiation, whether from sunlight or 

artificial sources like tanning beds is widely 

recognized as a leading cause of skin cancer (Abdar et 

al., 2021). Skin cancer is not only a serious public 

health concern but also the most commonly diagnosed 

form of cancer worldwide. It is generally classified 

into two main types: melanoma and nonmelanoma. 

Although less common, melanoma is the more 

aggressive and potentially life-threatening type (Abdar 

et al., 2021). It originates from melanocytes, the 

pigment-producing cells in the skin, which can begin 

to multiply uncontrollably and form malignant tumors. 

While melanoma can occur anywhere on the body, it 

most often appears in areas that receive frequent sun 

exposure, such as the face, neck, hands, and lips 

 

Detecting melanoma early is crucial, as it is highly 

treatable in its initial stages. If left undiagnosed, 

however, it can spread to other parts of the body, often 

resulting in severe and potentially fatal consequences 

(Höhn et al., 2021; Das et al., 2021). Melanoma 

presents in various forms, including nodular 

melanoma, superficial spreading melanoma, acral 

lentiginous melanoma, and lentigo maligna (Das et al., 

2021; Brunke et al., 2022). 

 

Despite melanoma's severity, the majority of skin 

cancer cases fall under the nonmelanoma category, 

which includes Basal Cell Carcinoma (BCC), 

Squamous Cell Carcinoma (SCC), and Sebaceous 

Gland Carcinoma (SGC) (Saarela & Geogieva, 2022). 

These types typically originate in the middle to upper 

layers of the epidermis. Fortunately, they tend to be 

less aggressive and are unlikely to metastasize 

(Pacheco & Krohling, 2021). 

 

Traditionally, skin cancer has been diagnosed through 

a biopsy, where a sample of suspicious tissue is 

removed and examined under a microscope. While 

this method is accurate, it is also invasive, often 

uncomfortable, and can take time to deliver results 

(Keerthana & Venugopal, 2023). 

Within this framework, deep learning which is a 

branch of machine learning inspired by the way the 

human brain interprets and processes information and 

offers promising advancements. These models excel at 

recognizing intricate patterns across different types of 

data, including images, text, and audio, enabling them 

to deliver highly accurate predictions. Convolutional 

Neural Networks (CNNs), in particular, have shown 

remarkable success in the field of image analysis. 

This study centers on the development of a deep 

learning model designed to detect cancer-related 

features in skin images and classify them into 

clinically relevant categories. By leveraging a 

comprehensive, annotated dataset of dermoscopic 

images, the model is trained to distinguish between 

different forms of skin cancer, such as melanoma, 

basal cell carcinoma, and squamous cell carcinoma. 

The model’s performance is measured using 

established evaluation metrics, including accuracy, 

precision, recall, F1-score, and the Area Under the 

ROC Curve (AUC-ROC). These results underscore 

the model’s potential as a dependable tool to support 

dermatological diagnosis. 

 

Ultimately, the goal of this research is to bridge the 

gap between advanced computational methods and 

practical clinical application, offering an efficient and 

scalable solution for the early identification and 

classification of skin cancer. 

 

2.0 The Skin Problems 
Skin conditions ranging from common issues like acne 

to more serious illnesses such as melanoma affect 

millions of individuals globally. Early diagnosis plays 

a vital role in ensuring timely and effective treatment. 

However, conventional diagnostic approaches, which 

typically involve physical examinations and biopsies, 

can be slow, costly, and sometimes influenced by 

subjective judgment. Thanks to recent progress in 

medical imaging and artificial intelligence (AI), 

automated detection systems are becoming valuable 

assets in the accurate and efficient diagnosis of skin 

diseases. 

 

2.1 Common Skin Problems and Their Impact 

Skin diseases can be broadly classified into four main 

categories: infectious, inflammatory, allergic, and 

malignant. Among the most common conditions is 

acne, which is a widespread dermatological issue 

typically caused by blocked pores and bacterial 

infections. Another frequently encountered condition 

is eczema, a chronic inflammatory disorder marked by 

redness, itching, and skin irritation. Psoriasis also 

ranks high among troubling skin diseases—an 

autoimmune condition that accelerates skin cell 

turnover, often leading to scaling, redness, and 

inflammation. 

According to research, skin disorders are the third 

most common category of disease and are a leading 

cause of illness among returning travelers. It's 

estimated that around 8% of individuals experience 

skin-related issues while traveling (Brigid & Brien, 

2009). 

One of the more serious and potentially life-

threatening skin conditions is skin cancer, which 
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includes melanoma, basal cell carcinoma, and 

squamous cell carcinoma. Also falling under serious 

skin conditions are fungal and bacterial infections like 

ringworm and cellulitis. These require prompt medical 

attention, as they can have a considerable impact on a 

person’s health and overall quality of life. 

 

2.2 Advanced Technologies in Skin Problem    

Detection 

The integration of technology in dermatology has 

improved diagnostic accuracy and efficiency. Some of 

the key advancements include: 

i. Machine Learning & Deep Learning – 

Algorithms trained on vast datasets can 

identify patterns and classify skin conditions 

with high precision. 

ii. Computer Vision & Image Processing – AI-

driven image analysis can detect 

abnormalities in skin texture, color, and 

structure. 

iii. Mobile Applications & Tele-dermatology – 

Smartphone-based diagnostic tools enable 

remote consultations and preliminary 

assessments. 

iv. Wearable Sensors – Devices that monitor 

skin health parameters such as moisture 

levels, temperature, and UV exposure. 

2.3 Deep Learning Concept for the Detection of 

Skin Problems 

Deep learning techniques, particularly CNNs, have 

shown some remarkable success in dermatological 

diagnosis. CNNs process high-resolution images to 

differentiate between benign and malignant lesions, 

reducing diagnostic errors. Studies have demonstrated 

that AI-based models can achieve dermatologist-level 

accuracy in detecting skin cancer, psoriasis, and other 

dermatological conditions. 

 

There are a number of key benefits of deep learning in 

skin problem detection, such benefits include: 

Automated and objective diagnosis, early detection 

leading to better treatment outcomes, reduced need for 

invasive procedures, scalability for widespread use in 

telemedicine and so on. However, challenges such as 

data bias, model interpretability, and regulatory 

approval must be addressed before widespread clinical 

implementation. 

 

3.0   Review of Related Studies 
In recent years, numerous studies have focused on 

developing computer-based methods for analyzing 

malignant skin lesions through medical images. 

Despite these efforts, challenges remain due to the 

complexity and variability often present in the datasets 

used for such analysis. To tackle these issues, Ali et al. 

(2021) introduced a deep learning-based model 

designed to accurately classify skin lesions as either 

benign or malignant. 

 

Their approach involved several preprocessing steps, 

including image enhancement, normalization, and data 

augmentation, to improve model performance. The 

extracted features were then processed using a custom-

designed Convolutional Neural Network (CNN), 

which was evaluated against several well-known 

pretrained models such as AlexNet, ResNet, VGG-16, 

DenseNet, and MobileNet. According to their 

findings, the proposed model achieved high training 

accuracy with minimal error. When compared with 

selected transfer learning architectures, the CNN 

developed by Ali et al. demonstrated strong reliability 

and promising results. 

 

Deep learning models often face difficulties when 

analyzing skin lesions with complex visual features, 

such as indistinct edges, presence of artifacts, low 

contrast against surrounding skin, or when constrained 

by limited training data. To address these challenges, 

Brunke et al. (2022) and Adegun & Viriri (2020) 

proposed a novel framework for both the classification 

and segmentation of skin lesions aimed at improving 

skin cancer detection. Their approach adheres to a 

conventional CNN architecture, with a Fully 

Connected Network (FCN) enhanced by a series of 

interconnected subnetworks. These subnetworks 

utilize skip pathways, including both long and shortcut 

connections, to better retain and integrate features 

across network layers. Additionally, hyperparameter 

optimization techniques were employed to minimize 

model complexity and improve computational 

efficiency. Experimental evaluations demonstrated 

high levels of accuracy, recall, and Area Under the 

Curve (AUC) scores. 

 

Further efforts to enhance machine learning 

performance on images of infected skin were detailed 

by Adegun & Viriri (2020) and Vidya & Karki (2020). 

These studies focused on feature extraction using 

established dermatological criteria such as the 

Asymmetry, Border irregularity, Color variation, and 

Diameter (ABCD) rule, alongside Gray-Level Co-

occurrence Matrix (GLCM) and Histogram of 

Oriented Gradients (HOG) techniques. The process 

began with preprocessing to improve lesion visibility 

and reduce noise from artifacts, skin tone variations, 

and hair. Lesions were then segmented using the 

Geodesic Active Contour (GAC) method, allowing for 

more precise isolation of the affected region—crucial 

for accurate feature extraction. 
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ABCD scoring was used to assess symmetry, border 

definition, color distribution, and diameter of lesions, 

while HOG and GLCM were applied to capture 

textural characteristics. These extracted features were 

then passed to various classifiers for distinguishing 

between benign and malignant (melanoma) lesions. 

Among the models tested, Support Vector Machine 

(SVM) outperformed the others, achieving a notable 

accuracy of 97.8% and an AUC of 0.94. K-Nearest 

Neighbor (KNN) also performed well, with a 

sensitivity of 86.2% and specificity of 85%, although 

it lagged slightly behind SVM in overall performance. 

 

In a related investigation, Afza et al. (2022) proposed 

an innovative method for multiclass classification of 

skin lesions, utilizing an advanced feature fusion 

strategy rooted in deep learning. Their workflow 

consists of five key stages: image acquisition and 

enhancement, deep feature extraction through transfer 

learning, optimal feature selection using a hybrid 

Whale Optimization Algorithm combined with 

Entropy Mutual Information (EMI), feature fusion via 

a modified canonical correlation approach, and final 

classification using an Extreme Learning Machine 

(ELM). The hybrid feature selection technique played 

a crucial role in enhancing both computational speed 

and model accuracy. 

 

Similarly, Bechelli and Delhommelle (2022) 

conducted a comparative study to evaluate the 

performance of various machine learning algorithms 

in classifying skin tumors. Their analysis included 

traditional models such as logistic regression, linear 

discriminant analysis, k-nearest neighbors, decision 

trees, and Gaussian Naïve Bayes. They also assessed 

several deep learning approaches, testing both custom-

built CNNs and well-established pretrained models 

like VGG16, Inception, and ResNet50. Results 

showed that deep learning models consistently 

outperformed classical machine learning techniques, 

achieving classification accuracies as high as 0.88. In 

contrast, traditional models hovered around 0.72 in 

accuracy, though this could be improved slightly to 

0.75 with the use of ensemble methods. 

 

4.0 Material and Methods 

 

4.1 Data Collection 

In this study, the predictive model was developed 

using a publicly available secondary dataset obtained 

from Kaggle, an open-access data platform. The 

dataset explored in this study comprises 2,357 

dermoscopic images representing both malignant and 

benign skin conditions, originally curated by the 

International Skin Imaging Collaboration (ISIC). The 

images were categorized according to ISIC’s 

standardized classification system. Efforts were made 

to balance the number of samples across categories, 

although slightly higher counts were observed in the 

melanoma and nevus (mole) classes. Overall, the 

dataset spans nine diagnostic categories: actinic 

keratosis, basal cell carcinoma, dermatofibroma, 

melanoma, nevus, pigmented benign keratosis, 

seborrheic keratosis, and squamous cell carcinoma. A 

visual representation of this dataset is provided in 

Figure 1. 

 

   Figure 1. Excerpts of the dataset retrieved from Kaggle 

 

4.2   Data Pre-processing 

The data retrieved from Kaggle was preprocessed to 

make it suitable for training. Attributes with no 

tangible contribution to learning were dropped using 

the appropriate library in python. The model created 

has been evaluated to determine its accuracy, 

precision, and recall. The preprocessing operation that 

has been adopted in this study is image augmentation, 

which includes, image rotation and image shift. The 

pre-augmentation and post augmentation dataset is 

illustrated in Figure 4 and Figure 5 respectively. 

Image Rotation 

One of the most widely used data augmentation 

techniques is image rotation. Rotating an image 

doesn’t change its underlying information after all, 

however, a skin cancer image looks the same no matter 

which angle you view it from. Because of this, we 

applied rotation to generate multiple versions of each 

image at different angles, effectively increasing the 

amount of training data available for the model. 

 

4.3   Convolutional Neural Network 

The proposed CNN architecture consists of two dense 

layers and three convolutional blocks. The last dense 

layer has seven neurons since the dataset has seven 
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classifications. Each convolutional block consists of a 

convolutional layer and a max pooling layer. Figure 2 

shows the CNN architecture.  

 

4.4   The CNN Architecture 

 

 

 

 

 

 

 

 

Figure 2. The CNN structure adapted from Fuadah et 

al., 2020 

 

The convolution operation extracts the features in the 

skin images as it is the role of the convolutional layer 

to extract spatial features from an input image. The 

output feature map was computed based on equation 

1. 

𝑌(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 − 𝑝, 𝑗 − 𝑞) . 𝐾(𝑝, 𝑞)

𝑛𝑚

 

                                                                     (1) 
where 

Y(I,j) represent the output feature map 

X (i – p, j – q) represent the input image 

K (p , q) represent the convolution kernel (filter) 

 

 4.5   Convolutional Layer  

Convolutional layers are at the heart of convolutional 

neural networks (CNNs). Convolution itself is simply 

the process of applying a filter to an input to produce 

an activation. By sliding the same filter over an input 

repeatedly, CNNs create a feature map that highlights 

where and how strongly a certain feature appears in the 

input like an image. What makes CNNs especially 

powerful is their ability to learn many filters in 

parallel, all tailored to the specific patterns found in 

the training data, and all within the framework of the 

predictive task at hand. 

 

 

 

Prior to the time CNNs gained popularity, tackling 

computer vision problems meant manually extracting 

features from data. This approach was not only 

inefficient but also struggled to achieve high accuracy. 

In contrast, CNNs have brought significant 

improvements in both efficiency and accuracy across 

various applications, with object detection being one 

of the most prominent examples (Ajit et al., 2020). 

 

4.6   Max Pooling 

Max pooling functions by scanning over sections of a 

feature map and selecting the highest value from each 

region, effectively creating a down-sampled version of 

the original. This approach helps to reduce 

dimensionality while preserving the most significant 

features. 

In addition, global pooling layers play a vital role in 

Convolutional Neural Networks (CNNs). These layers 

summarize information across the entire spatial 

dimension of a feature map, producing a fixed-length 

output vector. Techniques such as global average 

pooling and global max pooling are frequently used in 

modern CNN architectures to transform feature maps 

of varying input sizes into a consistent output format 

(Christelyn et al., 2019). It’s important to highlight 

that both max pooling and global pooling operate 

locally or across full spatial domains without taking 

broader spatial relationships into accounts; they treat 
each region or entire map independently during 

computation. 

4.7   Experimental Setup 

In this study, we used a Python programming 

environment to implement the selected feature 

extraction algorithms. The CNN model was built using 

Keras with TensorFlow as the backend, all within the 

Anaconda IDE. A summary of the hyperparameter 

settings is provided in Table 1, and the overall model 

structure is illustrated in Figure 3. 
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Figure 3.  Summarized model settings.  

 
 

We split the dataset so that 80% was used for training 

and the remaining 20% for testing. When it came to 

hyperparameter tuning, we chose the “Adam” 

optimizer. This optimizer is responsible for adjusting 

the model’s weights to minimize the loss function 

during training. 

 

Table 1: Hyperparameter Settings  

 

Hyperparameter  Value 

Number of Iterations  30 

Optimizer  Adam 

Activation Function in the 

input layer 

 Rectified 

Linear unit 

Activation Function in the 

output layer 

 Softmax 

Loss function  Categorical 

Cross Entropy 

 

 

4.8   Augmentation 

The whole idea behind augmentation is to make the 

model stronger and perform better, help the model 

generalize well to a new set of data, and cut down on 

overfitting. Figure 4 shows the dataset prior to 

augmentation, while Figure 5 shows the dataset after 

augmentation. 

 

 
 
Figure 4.  Data visualization before augmentation
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                 Figure 5. Data visualization after augmentation 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

4.9   Performance Evaluation 

Model performance evaluation is simply the process of 

checking how well a predictive or analytical model does 

its job, using certain measurements. The developed 

model was evaluated in terms of accuracy, precision, 

recall, F1-score, and loss. The Mathematical formulae 

are as given. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 

   (2) 

                

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

       (3) 

 

                    

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

                     (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

                                                                         (5) 

 

Where TP denotes True Positive, TN represent True 

Negative, FN is the number of False Negative and FP 

represents False Positive. 

 

5.0 Results and Discussion 

 

5.1 Results 

The model performance during the training process is 

illustrated in Figures 6 and 7. 

 

 
 

 
In some applications, the focus is mainly on one 

specific class, often the minority class. This is 

especially common in text classification tasks 

where the data is highly imbalanced. The class of 

interest is usually referred to as the positive class, 

while all others are grouped as negative. In such 

cases, relying on accuracy alone can be misleading. 

For instance, if 99% of samples are normal, a model 

could simply label everything as normal and still 

achieve 99% accuracy, without actually solving the 

problem.  
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That’s why additional metrics like precision, recall, 

and the F1-score are essential. Precision and recall, in 

particular, provide a clearer picture by showing how 

accurate and how complete the model’s predictions are 

for the positive class. The results of the performance 

metrics are represented in Table 2.   

 

Table 2.  Performance evaluation 
 

Model Accuracy  Precision  Recall 
F1-

score 

     

CNN 85.01% 0.9 0.89 0.9 

     

CNN + 

Grid 

Search 
89.21% 0.92 0.91 0.86 

 

5.2 Discussion 

The figure 3 and figure 4 in Section 4.1 illustrates the 

model accuracy and loss during the training process. 

Figure 3 continue to rise in accuracy to the point close 

to 90% as shown, while in Figure 4, the loss as shown 

in the graph keep descending as the model learns. 

Generally, in a machine learning, training loss 

indicates how such model fits the data it was trained 

on.  

Hyperparameter tuning is an essential process in 

optimizing CNNs to achieve the best possible 

performance. Determining the right combination of 

hyperparameters such as learning rate, and batch size, 

can drastically affect the accuracy and efficiency of a 

CNN. Grid Search is a widely used technique for 

hyperparameter tuning, as it systematically works 

through multiple combinations of parameters, 

evaluating the performance of each to identify the 

optimal set. Applying Grid Search in CNN 

hyperparameter tuning involves exhaustively 

searching through a manually specified subset of the 

hyperparameter space.  

This approach provides a structured framework for 

model selection, helping to improve the generalization 

of the network by navigating through the complex 

landscape of parameter sensitivities and interactions. 

Improved model generalization leads to higher 

accuracy. However, Grid Search is computationally 

expensive and time-consuming since it evaluates all 

possible parameter combinations. It is critical to 

conduct this process efficiently by narrowing down the 

search space based on prior knowledge or exploratory 

analysis. Low performance for CNN model has been 

attributed to the absence of hyperparameter 

optimization.  

 

This study demonstrates that applying grid search to 

optimize a CNN model can lead to noticeable 

performance gains. When compared with related 

works discussed in the literature, the model developed 

here achieved significantly improved accuracy, which 

is largely due to the careful tuning of hyperparameters 

through grid search. Additionally, data augmentation 

played a crucial role in enhancing the model's 

effectiveness, as highlighted in the study. Taken 

together, the use of CNNs alongside grid search proves 

to be a highly effective approach, especially for 

tackling the challenges associated with skin cancer 

classification. 

 

6.0 Conclusion  

This study developed a deep learning-based predictive 

model for the detection and classification of cancerous 

skin lesions. The study achieved this through an 

optimized CNN with an advanced feature extraction 

technique. The developed model demonstrates a better 

accuracy when compared to traditional diagnostic 

methods. The integration of a large and diverse dataset 

ensures its effectiveness across different skin types 

and cancer stages, making it a reliable technique and 

very useful for an early detection. 

The results highlight the strength of deep learning in 

skin cancer diagnosis by reducing human error, 

minimizing the need for invasive procedures, and 

enabling faster decision-making. This advancement 

has significant implications for dermatology and 

medical imaging, as it can assist healthcare 

professionals in improving diagnostic precision and 

patient outcomes. 

Future work will focus on further enhancing the 

model’s interpretability, integrating multi-modal data 

for improved classification, and exploring real-time 

deployment in clinical settings. With continued 

advancements, AI-driven diagnostic tools have the 

potential to transform cancer detection and contribute 

to more efficient and accessible healthcare solutions. 
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