

Gadau Journal of Pure and Allied Sciences

Gadau J Pure Alli Sci, 4(1): 27-34 (2025) ISSN: 2955-1722

DOI: https://doi.org/10.54117/k221ge96

A Review on the Characterization of Dinitrogen Substituted Cyclopentadienyl Manganese Tricarbonyl (CpMn(CO₃)N₂)

Nasiru Sharif^{1*}, Nasiru Alhaji Sani¹, and Zubairu Bello¹

¹Department of Chemistry, Federal University Gusau, PMB 1001, Zamfara-Nigeria

*Correspondence: nsharif@fugusau.edu.ng

Abstract	Article History
This review details the use of Fourier Transform Infrared (FTIR) and Raman Spectroscopic methods, to characterize dinitrogen complexes formed following the photolysis of cyclopentadienyl manganese tricarbonyl ((η^5 -C ₅ H ₅)Mn(CO) ₃), in the presence of N ₂ . The review was performed to explore the information relating to the structure and bonding modes of dinitrogen to the metal Centre. The main aim here was to explore the utilization of Raman spectroscopy in complimenting the application of Infrared spectroscopy in the characterization of organometallic complexes.	Received: 12/03/2025 Accepted: 22/05/2025 Published: 30/06/2025
	Keywords: Dinitrogen, Characterization, Photolysis, Infrared Spectroscopy, Raman Spectroscopy, Organometallic complexes, Structure and bonding modes.
	License: CC BY 4.0* BY Open Access Article

How to cite this paper: Sharif, N., Sani, N. A. and Bello, Z. (2025). A Review on the Characterization of Dinitrogen Substituted Cyclopentadienyl Manganese Tricarbonyl (CpMn(CO₃)N₂). Gadau J Pure Alli Sci, 4(1): 27-34. https://doi.org/10.54117/k221ge96

1.0 Introduction

The Photochemistry of organometallic complexes is important for wide range of applications. These include; catalytic CO₂ reduction, (Easun et al., 2014; Yang et al., 2009) probe of DNA damage, (Smith, et al., 2011) the study of reactive intermediates, (Johnson, et al., 1991; Kemnitz, et al., 2011) reaction pathways e.g. oxidative addition,(Hill & Wrighton, 1987) and photochemically generated dinitrogen complexes which are shown to serve as the precursors of organometallic alkanes complexes through lower energy irradiation (Calladine et al., 2010). Understanding photochemical reaction mechanisms is a prerequisite of full understanding of processes and a variety of techniques such as Infrared and Raman spectroscopy. Vibrational spectroscopy is often used to characterize reaction intermediates and unstable complexes, as they provide structural information and are not limited in terms of spectroscopic

timescales in the same way, more traditional approaches such as NMR are.

Carbonyl ligands deserve special attention in organometallic chemistry because they can be easily probed by infrared spectroscopy and can therefore offer great insight into the bonding in many organometallic compounds. As one of the most common ligands in organometallic compounds, carbon monoxide serves as the only ligand in binary carbonyls and is found in combination with other ligands in a vast number of compounds (Butler & Harrod, 1989). The bonding in metal carbonyls can be appreciated by studying the vibrational frequencies of the carbonyls in various transition metal environments using both IR and Raman spectroscopic methods. Through its highest occupied molecular orbitals (HOMO), the carbon atom of the carbonyl ligand can donate electron density to the partially filled d-orbital of the metal, while the metal

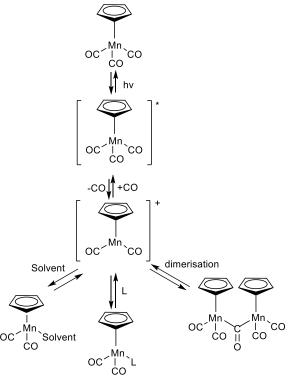
Journal of the Faculty of Science, Bauchi State University Gadau, Nigeria **CHM** - Chemistry

This work is published open access under the Creative Commons Attribution License 4.0, which permits free reuse, remix, redistribution and transformation provided due credit is given

back donates its d-electrons to the lowest unoccupied molecular orbital (LUMO) of the carbon atom. This π back bonding weakens the CO bond and hence lowers its vibrational frequency. For example, \Box (CO) in uncoordinated CO is 2143 cm⁻¹, while it was found to be 2000 cm⁻¹ in Cr(CO)₆ (Butler & Harrod, 1989). The vibrational frequencies of the CO ligand are also sensitive to the number of bonds present in a complex. An example of this is through the formation of bridging and triply bridging carbonyl ligands, where the vibrational frequencies are reported to be 1850 and 1750, or 1750 and 1620 cm⁻¹ depending on the ligand environment (Cotton, et al., 1995; Durig, et al., 1969). For many complexes ultraviolet (UV) light can be used to photolyze metal carbonyl complexes, causing the loss of a carbonyl ligand which results in the formation of a coordinatively unsaturated 16-electrons intermediate. In solution this would normally react very rapidly with the solvent and subsequently reacting substance, parent material or with a photo-ejected CO. This reactive intermediate in most photophysical and photochemical studies can be studied by either ultrafast time-resolved spectroscopic techniques or stabilization e.g. matrix isolation, so that it can be monitored through conventional spectroscopic methods such as FTIR and Raman spectroscopy (Murphy, 2015; Yang, 2003).

1.1 Infrared and Raman Spectroscopy of metal carbonyls

Infrared spectroscopic methods can easily be employed for the characterization of coordinatively unsaturated transition-metal carbonyls in the gas, solution or supercritical phase. Because many of these unsaturated carbonyls are extremely photo-labile and their UVvisible spectra are broad, featureless and provide very little structural information. As mentioned above, the infrared spectra of unsaturated transition metal carbonyls can exhibit strong absorption bands in the CO stretching vibrational region, which as previously mentioned are sensitive to changes in electron density around the metal center (George & Turner, 1998; Zhou, et al., 2001). Infrared spectroscopic measurements are based on the absorption of radiation from the infrared region of the electromagnetic spectrum, typically the mid-IR region i.e. $400 - 4000 \text{ cm}^{-1}$, (Brian, 2011) by a chemical substance in the solid, liquid or gaseous form. This measurement is routinely carried out using Fourier Transform Infrared Spectrophotometers (FTIR). The Raman Effect was first demonstrated experimentally in 1928 by Chandrashekhara Venkata Raman, an Indian physicist who discovered that of a small fraction visible light can be scattered by certain molecules resulting in a shift in the scattered light's wavelength which depends on the chemical nature of the molecule and its vibrational modes. For his discovery Raman was awarded Nobel Prize in physics in 1931 (Butler & Harrod, 1989; Das & Agrawal, 2011; Miessler & Donald, 2014).


According to selection rules a molecular vibration is IR active if the dipole moment changes during the vibration. Hence, a molecular vibration can be IR active, Raman active or both. However, totally symmetric vibrations are always Raman active. (Das & Agrawal, 2011) Also, the nature of chemical bond indicates the change in polarizability for a given vibration, as the more covalent in character a bond, the more polarizable and hence strongly Raman active its associated vibration is. On the other hand, bonds with ionic character are less polarizable and have a large change in dipole moment, and can therefore be strongly IR active. For covalent compounds, the polarizability increases with increasing bond order (Ferraro & Nakamoto, 1994). Raman spectroscopy has been used by Easun, et. al., 2014 to show the formation of mer.Re(diimine)(CO)₃Cl from fac.Re(diimine)(CO)₃Cl, the process was illustrated by clear decrease in the parent peak intensity around 1600 and 1500 cm⁻¹ in the Raman, and the subsequent appearance of product bands at a lower wavenumber, illustrating the conversion of the fac. isomer to mer (Easun et al., 2014). This research clearly demonstrates the complimentary use of Raman and FTIR spectroscopic methods in the study of photochemical reaction intermediates and products. In a related studies Durig and co-workers investigated the vibrational $(\eta^5-CH_3COC_5H_4)V(CO)_4$ frequencies of (n⁵-C₅H₅)V(CO)₄ in solid KBr and cyclohexane solution, using FTIR and Raman spectroscopic methods. The results showed no significant difference in the position of the vibrational bands for FTIR method in both medium (KBr and cyclohexane solution). The studies using Raman spectroscopy shows the appearance of narrow bands compared in the FTIR in active region (Durig et al., 1969; Kariuki & Kettle, 1976).

1.1.1 Infrared and Raman Spectroscopy of $(\eta^5-C_5H_5)Mn(CO)_3$

vibrational spectra of $(\eta^5-C_5H_5)Mn(CO)_3$ The compounds can be best described using local symmetry proposed by Cotton et. al. 1995, which assumed the little interaction between the $Mn(CO)_3$ cyclopentadienyl ring. The ring possesses C_{5v} symmetry while the Mn(CO)₃ moiety has C_{3v} symmetry (Adams & Squire, 1973; Hyams, et al., 1967; Parker & Stiddard, 1968). However, a differing number of \square (CO) bands are observed in the solution and solid phase of (η^5 -C₅H₅)Mn(CO)₃ in the IR and Raman spectra. These can be described based on the extent of interaction between Cp-Mn and the Mn(CO)₃ moieties. The solid-state spectra can be described using factor group, site symmetry or unit cell models. The site symmetry model predicts the conversion of the Mn(CO)₃ moiety from a C_{3v} to a Cs point group, causing the splitting of

degenerate E-mode of the C_{3v} , hence more than three peaks are reported in both the Raman and IR spectrum. In the liquid phase, the spectra can be described using the oriented gas model in which each molecule is assumed to behave independently, hence the $Mn(CO)_3$ moiety will have C_{3v} point group as predicted and two $\square(CO)$ peaks of the A_1 and E modes are visible in the IR and Raman spectrum (Fitzpatrick, *et al.*, 1981a, 1981b; Kettle, 2007).

According to scheme 1.0, during photolysis of the (η⁵-C₅H₅)Mn(CO)₃ complex, absorption of light of right wavelength causes the ejection of one or more carbonyl ligand to form a coordinatively unsaturated carbonyl intermediate which can react in various ways to form different photoproducts. These can be monitored through vibrational spectroscopy, because the vibrational frequencies of carbonyl ligands are sensitive to the change in electron density on the metal centre. As evident from the figure 1, if the complex is in N₂ matrix, or in an inert matrix in the presence of N₂ gas, UV photolysis can produce a dinitrogen complex as one of the photo products (Hitam, *et al.*, 1984).

Scheme 1.0: Photochemical pathways of (η⁵-C₅H₅)Mn(CO)₃ showing various possible photoproducts. Adapted from (Hitam *et al.*, 1984)

1.2 Dinitrogen Complexes and their carbonyl vibrational frequencies

The occurrence of transition metal dinitrogen complexes was first reported in 1965 through the synthesis of

[Ru(N₂)(NH₃)₅]²⁺ (Chatt, et al., 1978; Grills, et al., 2006). This process was deemed a promising development in the search of an alternative chemical nitrogen fixation route to the Haber-Bosch process. The Haber-Bosch process involves a reaction between nitrogen and hydrogen gas over an iron catalyst at high temperature and pressure to produce gaseous ammonia, however, these conditions are energy intensive. The goal of immerging chemical nitrogen fixation is to produce a metal-based nitrogen catalyst that can efficiently convert gaseous nitrogen under mild conditions into industrially useful and environmentally friendly compounds, by mimicking the biological nitrogen fixation process (Childs, Colley, et al., 2000; Grills et al., 2006). Some promise has been shown by the polymeric dinitrogen complex of $(n^5-C_5H_5)Mn(CO)_3$ which is highly stable compared to the monomeric analogue (Kurimura et al., 1981), the property that makes it a potential nitrogen fixation catalyst.

Figure 1 shows the various bonding modes by which dinitrogen can bind to the metal centre which include; end-on mononuclear, end-on binuclear, side-on binuclear and side-on and end-on binuclear, among which the end-on mononuclear mode is the most commonly reported for weakly activated 18-electron complexes (Das & Agrawal, 2011).

Figure 1: Binding modes of dinitrogen on metal centres. Adapted from (Childs, et al., 2000)

Comparing the vibrational frequencies of carbonyls and dinitrogen in transition metal complexes, it is evident that dinitrogen is a better σ electron donor and a weaker π -electron acceptor, while carbonyl is a stronger π electron acceptor than dinitrogen in carbonyls complexes. This can be observed from the decrease in the carbonyl vibrational frequencies, due to the increase in back donation to the remaining ligands, when one of the carbonyls is substituted by dinitrogen (Fitzpatrick & Mathews, 1973).

The dinitrogen complexes can be synthesized through of photogenerated formation dicarbonyl intermediates in hydrocarbon solvents, inert gases, supercritical fluids or polymer matrices at room or very low temperatures (Yang, 2003). These reactive complexes tend to have a very short lifetime due to their high reactivity, and are therefore often present in very low concentrations within the reaction mixture. The study of reactive intermediates therefore requires the use of techniques that can either extend the lifetime of the transient species by cooling the reaction down, e.g. through matrix isolation, or by observation of the intermediates immediately when they are formed, by time-resolved spectroscopy (Fitzpatrick & Mathews, 1973; George et al., 2003; Yang, 2003).

1.3 Matrix Isolation Technique

Matrix isolation is a technique used to obtain detailed information about the structure of a reactive intermediate by prolonging its lifetime once formed through the use of low temperature and inert (or relatively inert) matrix, this allows spectroscopic measurements to take place on a reasonable timescale (Hitam et al., 1984). These unstable intermediates are generated either by gas phase reactions, and then immobilising them on cold window, or by decomposing already stabilised molecules and isolating them from further reactions such as recombination, intermolecular electron transfer, and so on, while in inert gases (Calladine et al., 2009; Sun et al., 1997), hydrocarbon solvents (Calladine et al., 2010; Calladine et al., 2009; Childs, et al., 2000), polymer discs (Childs, et al., 2000; Clarke, et al., 2000; Clarke, et al., 1994) and supercritical fluids (Banister et al., 1994; Calladine et al., 2010). Some form of irradiation (e.g. UV photolysis) (Murphy, 2015), is also used to generate the unstable intermediate.

The development of various matrix isolation techniques makes it more versatile, in that the restriction imposed by one method can be overcome by the other. For example, the problem associated with gas matrices such as site symmetry splitting, volatility at high temperature and so on, can be managed by using hydrocarbon solvents or a polymer matrix. In turn, the hydrocarbon solvent and polymer matrix have the disadvantages of strong absorption bands which may interfere with the bands of the substance of interest, this can also be solved by use of supercritical fluids or an inert gas matrix (Cooper *et al.*, 1993; Murphy, 2015).

1.3.1 Noble or Inert Gas Matrices

The term 'inert' in chemical a process is generally referring to non-reactive. Therefore, a gas is inert if its atoms do not combine with other atoms in a chemical reaction under relevant set conditions. Noble gases are traditionally referred as inert because they were believed to be unreactive, due to their stable octet of valence electrons. The interesting chemistry of these elements from the second most abundant element; Helium (He), through to the third most abundant component of dry air; Argon (Ar), to the radioactive; Radon (Rn) are now widely studied.(Miessler & Donald, 2014) The chemistry of noble gases started in the late 1940s when the first compounds containing noble gases known as clathrates were synthesized. The compounds were believed to contain Argon, Krypton and Xenon. (Miessler & Donald, 2014). Among these elements Xe is observed to have rich chemistry, since the observation of its first compound by Bertlett in 1962 (Murphy, 2015). Some of the early matrix isolation studies in noble gas matrices were performed by Perutz and Turner, (Perutz & Turner, 1975) since then noble gasses are shown to be promising matrices and are extensively used to study various reactive intermediates due to their transparency in the IR and UV regions of the spectrum and can be liquefied at moderate pressures and low temperature (Perutz & Hall, 1996). But the comparable solvating properties to heavier hydrocarbons and high cost, limit their wider application for study of reactive intermediates (Bloyce et al., 1990; Calladine et al., 2009). Metal carbonyl complexes are reported to dissolve in liquid noble gasses at low temperatures thereby serving as a reaction medium where the complexes react with dopant molecules such as N2 and H₂. For example, Maier and coworkers synthesised Ni(CO)₃N₂ in liquid krypton at 114 K from Ni(CO)₄ (Hitam et al., 1984; Maier, et al., 1982). Later the same group identified Cr(CO)₃Xe in liquid Xe-doped Kr at cryogenic temperature as first evidence of formation of noble gas complexes with significantly longer lifetimes in solution, which could be attributed to the increase in the energy of visible absorption band of the unsaturated fragment with the series of noble gases (i.e. Xe>Kr>Ar>SF6>Ne) indicating strong interaction with Xe (Simpson, et al., 1983). Frozen gas matrices at 12 K were also shown to stabilise the transient reactive intermediates after photo-ejection of CO through UV photolysis.(Bloyce et al., 1990; Hitam et al., 1984) Recently, supercritical fluids have largely replaced liquid and gaseous noble gases matrices, because they can be used to study reactive intermediates at room temperature under high pressure. However, it is important to know at this point that gaseous substances used as matrix materials should be the highest purity to minimize the number of possible side reactions with impurities and unstable intermediates at low temperature (Hitam et al., 1984).

1.3.2 Supercritical Fluids

A Supercritical fluid is formed when the exerted pressure and temperature of a fluid exceed its critical values i.e. Pc and Tc, (Sun et al., 1997) unlike conventional solvents, gases like hydrogen are miscible in supercritical fluids, this property provides an avenue for hydrogenation reactions.(Yang, 2003) Due to the high solubility of H₂ in supercritical Xe, it was reported to react with (n⁵-C₅H₅)Mn(CO)₃ under ambient condition to produce a stable dihydrogen complex, (Howdle & Poliakoff, 1989) also nitrogen gas was shown for the first time by Howdle and Polliakoff to react with (n⁵-C₅H₅)Re(CO)₃ in supercritical Xe and produced mono, di and trisubstituted complexes, products that were not reported in conventional solvents.(Howdle, et al., 1989) Supercritical fluids (sc) have been demonstrated to be an environmentally more acceptable analytical solvent than hydrocarbon solvents. For example, supercritical CO2 is used for impregnation of polyethylene disk with a $(\eta^5$ - C₅H₅)Mn(CO)₃ complex (Cooper et al., 1993), this helps to reduce the number of interferences observed in the vibrational spectra, caused by persistent nature of hydrocarbon solvents. Bannister et. al. also reported the UV photolysis of metal complexes in supercritical CO₂, Xe and C₂H₆ with high pressure of N₂, leading to photosubstitution of CO by N2. A comparison of product bands in a scCO2 and scXe solvent clearly indicates no significant difference between the products obtained in both solvents, thus scCO2 can serve as the potential alternative to the more expensive scXe (Banister et al., 1994; Leitner, 2002). Furthermore, scXe was reported by Sun, et. al., to stabilised the transient (η^5 -C₅H₅)Re(CO)₃ through formation of (η^5 -C₅H₅)Re(CO)₂(Xe), the remarkable stability of this complex was good enough to make its observation through NMR spectroscopy (Sun et al., 1997). $(\eta^5-C_5H_5)Re(CO)_2(Xe)$ was also observed to be more stable than $(\eta^5-C_5H_5)Re(CO)_2(Kr)$ toward CO dissociation in scKr solution doped with Xe at room temperature.(George et al., 2003; Sun et al., 1997).

1.3.3 Hydrocarbon Solutions

IR spectroscopy was also shown to be a powerful tool for the study of organometallic alkane complexes, particularly those which include carbonyl ligands (Murphy, 2015; Perutz & Turner, 1975). Organometallic alkane complexes of transition metal carbonyls have been reviewed extensively (Calladine *et al.*, 2009; Murphy, 2015; Sun *et al.*, 1997). From the work of Kelly and Gustorf in 1973 on Cr(CO)₆ in cyclohexane at room temperature, since then various hydrocarbon solvent matrices were used in the study of different carbonyl intermediates(Kelly & Gustorf, 1973).

The stability of photogenerated unsaturated reactive intermediate was found to be dependent on the nature of hydrocarbon solvents, various studies have revealed that longer chain and cyclic hydrocarbons can stabilise an intermediate more than their small chain counterparts. Thus, CH₄ has a weaker binding energy toward a metal centre than any other hydrocarbon matrix (Murphy, 2015). The $(\eta^5-C_5H_5)Re(CO)$ (CO)₂ intermediate was reported by Callidine and co-workers to be stabilized by cyclopentane and n-heptane at room temperature to form $(\eta^5-C_5H_5)Re(CO)_2(cyclopentane)$ and C5H5)(Re)(CO)₂(n-heptane) respectively.(Calladine et al., 2009) These intermediates have longer lifetimes than all the hydrocarbon intermediates studied and were the first to be characterised by NMR spectroscopy.(Childs, Colley, et al., 2000; Cowan & George, 2008; Torres, et al., 2015) Recently, TRIR and NMR studies of (n⁵-C₅H₅)Mn(CO)₃ in ethane and isopentane at 135 K yields relatively stabilised reactive intermediates. Subsequent characterisation by NMR revealed the compounds possessed different isomerised photoproducts (Torres et al., 2015). Perflourinated alkanes were also shown to be promising in that they can stabilise the reactive intermediates more than some hydrocarbon solvents. Although, some complexes are reported to have low solubility in perflourinated alkanes, this limitation has been overcome by doping with alkanes or noble gases such as Xe (Murphy, 2015).

1.3.4 Polymer Matrices

Different photoproducts are observed as a result of a reaction between photo-generated (η^5 -C₅H₅)Mn(CO)₃ in the polyethylene (PE) matrix and the pendent olefinic C=C bond along the polymer chain (Cooper *et al.*, 1993). Clarke and Co-workers later observed the formation of four different (η^5 -C₅H₅)Mn(CO)₂(C=C) complexes, where (η^5 -C₅H₅)Mn(CO)₂ intermediate is bound to the polyethylene matrix through the vinyl, pendent or internal C=C bond in the PE chain, the formation of which competes with other reactants such as H₂ and N₂, hence inhibiting the synthesis of important complexes such as (η^5 -C₅H₅)Mn(CO)₂ in the polymer matrix.(Clarke *et al.*, 1994).

To overcome the above problem, the same group demonstrated the use of Fe(CO)₅ and W(CO)₆ as photoisomerization catalysts can reduce alkene bonds in PE the application of which is promising due to the ease of purification, where the complex is dissolved in supercritical scCO2, thereby producing a PE matrix that is practically inert. Therefore, subsequent impregnation of the PE disc with complexes such as $(\eta^5\text{-}C_5H_5)\text{Mn}(\text{CO})_3$ results in almost no detectable polymer bound complex (Clarke *et al.*, 2000)

1.4 Time Resolved Spectroscopy

Time resolved spectroscopy involves rapid detection of photochemically generated reactive intermediates as they are formed. This can be achieved through the process of a "pump probe" method, which involves flash photolysis coupled with vibrational spectroscopic monitoring, thereby allowing the immediate detection of reactive unsaturated species generated from milliseconds to picoseconds timescales. However, with recent development in the methods of generating fast laser pulses, very rapid detection of up to femtoseconds levels are possible (Murphy, 2015, George & Turner, 1998). When the FTIR detection method is employed the process is known as Time Resolved Infrared Spectroscopy (TRIR). TRIR is a powerful technique that has been used for many decades in the study of the properties of various reactive intermediates. The design of a TRIR system in 1982 permitted the determination of IR absorptions and the kinetics of transient intermediates with picosecond lifetimes in solution, and its application in a study of the photochemistry and secondary thermal reactions of Cr(CO)₆, Mo(CO)₆, and W(CO)₆ (Hermann, et al., 1982) Later Creaven and Co-workers show that the combination of UV-Vis. detection and TRIR spectroscopy can serve as the powerful tool in the study

of organometallic reaction mechanisms and it can complement low temperature matrix isolation techniques.(Creaven, 1987) This was demonstrated through the detection of the decay of a $(\eta^5 -$ C₅H₅)Mn(CO)₂ intermediate generated following the UV photolysis of $(\eta^5-C_5H_5)Mn(CO)_3$, the technique was able to show the growth of bands related to the reaction with the solvent and dimerisation. The continuous developments in TRIR and matrix isolation provide insights into well-studied systems such as IR evidence for the previously unknown dicarbonyl intermediates; $[(\eta^5-C_5H_5)Mn(CO)_2Et....solv.]$ and C_5H_5 Mn(CO)₂(CH₂CH₂- μ -H)] [M=Mo or W], both in methane matrices at 13K and in solution at room temperature (Johnson et al., 1991).

Development of different approaches to TRIR measurements such as point by point, step-scan and scanning dispersive TRIR has increased the quality of spectra in terms of the signal to noise ratio and time resolution, the properties that ultimately increase the scope of the number of reactive intermediates that can be probed by this method (George *et al.*, 2003; Sun, *et al.*, 2002).

2.0 Conclusion

The review covered the synthesis of dinitrogen complexes of $(\eta^5-C_5H_5)Mn(CO)_3$ through UV photolysis in hydrocarbon solvents and polyethylene matrices at room and low temperatures, and its characterisation. This revealed information on the synthesis and characterisation using FTIR and TRIR techniques, but used of other techniques such as Raman spectroscopic method have not been reported.

Conflict of Interest

The authors have no conflict of interest to declare.

References

- Adams, D. M., & Squire, A. (1973). Re-Assignment of The Vibrational Spectra of Rr-Cyclopentadienyl Manganese Tricarbonyl. J. Organomet. Chem., 63, 381-388.
- Banister, J. A., George, M. W., Grubert, S., Howdle, S. M., Jobling, M., Johnson, F. P. A., Westwell, J. R. (1994). Organometallic photochemistry in supercritical fluids: reactions of cyclopentadienyl carbonyl and phosphine carbonyl complexes of manganese with dinitrogen. J. Organomet. Chem., 484, 129-135.
- Bitterwolf, T. E., Lott, K. A., Rest, A. J., & J. Mascetti. (1991). Photolysis of Group VI metal carbonyls, (C₆H₆)Cr(CO)₃, (C₅H₅)Mn(CO)₃, (CH₃C₅H₄)Mn(CO)₃ and (C₅H₅)Re(CO)₃ in Nujol at 77K. J. Organomet. Chem., 419, 113-126.

- Bloyce, P. E., Hooker, R. H., Rest, A. J., Bitterwolf, T. E., Fitzpatrick, N. J., & Shade, J. E. (1990). Photochemistry of some Manganese and Chromium Dinuclear Metal Carbonyl complexes in frozen gas matrices. J. Chem. Soc., Dalton Trans., 833-841.
- Brian, C. S. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy (Second ed.). London: CRC Press, 25-50
- Butler, I. S., & Harrod, J. F. (1989). Inorganic Chemistry Principle and Application. Redwood City: The Benjamin/Cummings Publishers. 110-139
- Calladine, J. A., Torres, O., Anstey, M., Ball, G. E., Bergman, R. G., Curley, J., . . . Peter, C. (2010). Photoinduced N_2 loss as a route to long-lived organometallic alkane complexes: A timeresolved IR and NMR study. Chem. Sci., 1(5), 622-630.
- Calladine, J. A., Vuong, K. Q., Sun, X. Z., & George, M. W. (2009). Recent advances in organometallic alkane and noble gas complexes. Pure Appl. Chem., 81(9), 1667-1675.
- Chatt, J., Dilworth, J. R., & Richards, R. L. (1978). Recent Advances in the Chemistry of Nitrogen Fixation. Chem. Rev., 78(6), 589-625.
- Childs, G. I., Colley, C. S., Dyer, J., Grills, D. C., Sun, X. Z., Yang, J., & M.W. George. (2000). Investigation into the reactivity of $M(\eta^5-C_5R_5)(CO)_2(alkane)$ (M=Mn or Re; R=H, Me or Ph; alkane = n-heptane or cyclopentane) and $Re(\eta^5-C_5H_5)(CO)_2(Xe)$ in solution at cryogenic and room temperature. J. Chem. Soc., Dalton Trans., 12, 1901-1906.
- Childs, G. I., Gallagher, S., Bitterwolf, T. E., & George, M. W. (2000). An inve stigation into the photochemical reactions of $M(\eta^5-C_5H_5)(CO)_4$ and $M(\eta^5-C_9H_7)(CO)_4$ (M=Nb or Ta) with H_2 and N_2 in polyethylene matrices and liquid xenon at low temperature. J. Chem. Soc., Dalton Trans., 24, 4534-4541.
- Clarke, M. J., Cooper, A. I., Howdle, S. M., & Poliakoff, M. (2000). Photochemical Reactions of Organometallic Complexes Impregnated into polymer, Speciation, Isomerization and hydrogenation of residual Alkene moieties in polythylene. J. Am. Chem. Soc., 122, 2523-2531.
- Clarke, M. J., Howdle, S. M., Jobling, M., & Poliakoff, M. (1994). Photochemical Generation of Polymer-Bound CpMn(CO)₂ Complexes in Polyethylene Film. A diagonostic tool for investigating the Unsaturation of the polymer. J. Am. Chem. Soc., 116, 8621-8628.
- Cooper, A. I., Howdle, S. M., Hughes, C., Jobling, M., Kazarian, S. G., Poliakoff, M., Johnston, K. P. (1993). Spectroscopic Probes for Hydrogen

- Bonding, Extraction Impregnation and Reaction in Supercritical Fluids. ANALYST, 118, 1111-1116.
- Cotton, F. A., Wilkinson, G., & Gaus, P. L. (1995). Basic Inorganic Chemistry (3rd ed.). New York: John Wiley and sons. 105-210.
- Cowan, A. J., & George, M. W. (2008). Formation and reactivity of organometallic alkane complexes. Coord. Chem. Rev., 252(23-24), 2504-2511.
- Creaven, B. S. D., A. J. Kelly, J. M. Long, C. and Poliakoff, M. (1987). Structure and Reactivity of $(C_5H_5)Mn(CO)_2$ in Room Temperature Solution. Evidence for Formation of a Dinuclear Intermediate Detected by Flash Photolysis and Time Resolved Infrared Spectroscopy. Organomet., 6, 2600-2605.
- Das, R. S., & Agrawal, Y. K. (2011). Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc., 57(2), 163-176.
- Durig, J. R., Marston, A. L., King, R. B., & Houk, L. W. (1969). The Infrared and Raman Spectra Of Cyclopentadienylvanadium Tetracarbonyl Derivatives: Evaluation Of The Carbon-Oxygen Force Constants. J. Organomet. Chem., 16 425-437.
- Easun, T. L., Jia, J., Calladine, J. A., Blackmore, D. L., Stapleton, C. S., Vuong, K. Q., George, M. W. (2014). Photochemistry in a 3D metal-organic framework (MOF): monitoring intermediates reactivity of the and fac-to-mer of Re(diimine)(CO)₃Cl photoisomerization incorporated in a MOF. Inorg. Chem., 53(5), 2606-2612. Retrieved https://www.ncbi.nlm.nih.gov/pubmed, 2451-2024
- Ferraro, J. R., & Nakamoto, K. (1994). Introductory Raman Spectroscopy (K. Nakamoto Ed. Second Edition ed.). Boston: Academic Press.
- Fitzpatrick, N. J., & Mathews, N. J. (1973). Theoretical studies of nitrogen bonded organometallic carbonyls. J. Organomet. Chem., 61, C45-C47.
- Fitzpatrick, P. J., Page, Y. L., Sedman, J., & Butler, I. S. (1981a). Reexamination Of The Crystal and Molecular Structure Of Tricarbonyl(~5-Cyclopentadienyl)Manganese(I) Structural and Spectroscopic Evidence. Inorg. Chem., 20(9), 2852-2861.
- Fitzpatrick, P. J., Page, Y. L., Sedman, J., & Butler, I. S. (1981b). The Structure Of Tricarbonyl(R_f-Cyclopentadienyl)Rhenium(I). Acta Cryst., B37, 1052-1058.
- George, M. W., Kuimova, M. K., Matousek, P., Wilson, C., Alsindi, W. Z., Parker, A. W., P. Portius. (2003). Using picosecond and nanosecond time-resolved infrared for the nvbistigation of

- excited state and reaction intermediates of inorganic systems. Dalton Trans., 3996-4006.
- George, M. W., & Turner, J. J. (1998). Excited states of transition metal complexes studied by time resolved infrared spectroscopy. Coord. Chem. Rev., 177, 201–217.
- Grills, D. C., Huang, K. W., Muckerman, J. T., & E. Fujita. (2006). Kinetic studies of the photoinduced formation of transition metal—dinitrogen complexes using time-resolved infrared and UV–vis spectroscopy. Coord. Chem. Rev., 250(13-14), 1681-1695.
- Hermann, H., Grevels, F. W., Henne, A., & Schaffner, K. (1982). Flash Photolysis with Infrared Detection. The Photochemistry and Secondary Thermal Reaction of M(CO)₆ [M=Cr, Mo and W]. J. Phys. Chem., 86, 5151-5154.
- Hill, R. H., & Wrighton, M. S. (1987). Oxidative Addition of Trisubstituted Silanes to Photochemically Generated Coordinatively Unsaturated Species $(C_4H_4)Fe(CO)$, $CpMn(CO)_2$ and $(C_6H_6)Cr(CO)_2$ and Related Molecules Organomet., 6, 632-638.
- Hitam, R. B., K.A.Mahmoud, & Rest, A. J. (1984). Matrix Isolation Studies of Organometallic Intermediates. Coord. Chem. Rev., 55, 1-29.
- Howdle, S. M., Grebenik, P., Perutz, R. N., & Poliakoff, M. (1989). The synthesis and spectroscopic identification of CpRe(N₂)₃ and CpReCO(N₂)₂ in supercritical Xenon at room temperature and in N₂ Matrices at 20K. J. Chem. Soc. Chem. Commun., 1517-1519.
- Howdle, S. M., & Poliakoff, M. (1989). Organometallic Photochemistry in Supercritical Fluids the Reaction of H₂ with [CpM(CO)₃] (M=Re and Mn) and the formation of a non clasical dihydrogen complex of Manganase(I). J. Chem. Soc., Chem. Commun., 1099-1101.
- Hyams, I. J., Bailey, R. T., & Lippincott, E. R. (1967). The infrared and Raman spectra of clopentadienyl compounds (cyclopentadienyl manganese tricarbonyl). Spectrochim. Acta., 2(3A), 273-284.
- Johnson, F. P. A., Gordon, C. M. P., Hodges, M., Poliakoff, M., & J.J. Turner. (1991). Photochemistry of [M(q⁵-C₅H,)(CO),Et] (M = Mo or W) a mechanistic study using time resolved infrared spectroscopy and matrix isolation. J. Chem. Soc., Dalton Trans., 833-839.
- Kariuki, D., & Kettle, S. F. A. (1976). The Raman Spectra. of Mixed Crystals-of Metal Carbonyls In The 2000 Cm-1 Region. J. Organomet. Chem., 105, 206-215.
- Kelly, J. M., & Gustorf, E. K. V. (1973). Observation of pentacarbonylchromium on flash photolysis of

- hexacarbonylchromium in cyclohexane solution J. Chem. Soc. Chem. Commun., 105–106.
- Kemnitz, C. R., Ball, E. S., & McMahon, R. J. (2011). Photochemistry of CpMn(CO)₃ and Related Derivatives: Spectroscopic Observation of Singlet and Triplet CpMn(CO)₂. Organomet., 31(1), 70-84.3.
- Kettle, S. F. A. (2007). Symmetry and Structure Readable Group Theory for Chemists (Third ed.). West Sussex: John Wiley and Sons. 95-106.
- Kurimura, Y., Uchino, Y., Ohta, F., Saito, C., Koide, M., & Tsuchida, E. (1981). Preparation of polymer bound dinitrogen complexes by direct reactions of polymer metal complexes with molecular nitrogen. Polymer J., 13(3), 247-253.
- Leitner, W. (2002). Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis. Acc. Chem. Res. (35), 746-756.
- Maier, W. B., Poliakof, M., Simpson, M. B., & Turner, J. J. (1982). Synthesis and Kinetics of Ni(Co)₃N₂ in Liquid Krypton; Indication Of Ni-N₂ Bond Energy. J. Chem. Soc.,Chem. Commun., 80, 83-86.
- Markwell, R. D., S.Butler, I., Gao, J. P., & Shaver, A. (1993). Near-Infrared Fourier Transform Raman spec. characterization of metal carbonyl in polymers. J. Raman Spectrosc., 24, 423-430.
- Miessler, G. L., & Donald, A. T. (2014). Inorganic Chemistry (D. A.T. Ed. 5th Edition ed.). Essex: Prentice Hall. 102-150.
- Molvinger, K., Childs, G. I., Jobling, M., Roper, M., George, M. W., & M. Poliakoff. (2000). IR Evidence for the Generation of $(C_5H_5)Mn(CO)_2(N_2O)$ in Near-Critical N_2O at Room Temperature and polyethylene Matrices at Low Temperature. Chem. Letts., 1260-1261.
- Murphy, T. S. (2015). Time-Resolved Spectroscopic Studies of Reactive Intermediates. (PhD Thesis). University of Nottingham, Nottingham. (31288).
- Murphy, T. S. (2015). Time-Resolved Spectroscopic Studies of Reactive Intermediates. (PhD). University of Nottingham.
- Parker, D. J., & Stiddard, M. H. B. (1968). Vibrational and Electronic Spectra of Transition-metal Carbonyl Complexes. Part V.1 Solvent Effects on the Infrared Spectra of the Complexes (C₅H₅)Mn(CO)₃ and (C₆Me₆)Cr(CO)₃. Inorg. Phys. Theor., A, 2263-2264.
- Perutz, R. N., & Hall, C. (1996). Transition Metal Alkane Complexes. Chem. Rev., 96, 3125-3146.
- Perutz, R. N., & Turner, J. J. (1975). Photochemistry of the Group 6 Hexacarbonyls in Low

- Temperature Matrices. VI. Tetracarbonylmolybdenum and Tricarbonylmolybdenum. J. Am. Chem. Soc., 97(17), 4800-4804.
- Simpson, M. B., Poliakoff, M., Turner, J. J., Maier, W. B., & McLaughlin, J. G. (1983). [Cr(CO)₅Xe] in Solution the First Spectroscopic Evidence. J. Chem. Soc., Chem. Commun., 1355-1357.
- Smith, J. A., George, M. W., & Kelly, J. M. (2011). Transient spectroscopy of dipyridophenazine metal complexes which undergo photo-induced electron transfer with DNA. Coord. Chem. Rev., 255(21-22), 2666-2675.
- Sun, X. Z., Grills, D. C., Nikiforov, S. M., Poliakoff, M., & George, M. W. (1997). Remarkable Stability of CpRe(CO)₂L (L = n-Heptane, Xe and Kr): A time resolved infrared spectroscopic study of CpRe(CO)₃ in conventional and supercritical fluid solution. J. Am. Chem. Soc., 119, 7521-7525.
- Sun, X. Z. N., S. M. Yang, J. Colley, C. S. and George, M. W. (2002). Nanosecond Time-Resolved Step-Scan FT-IR Spectroscopy in Conventional and Supercritical Solvent Using a Four Window Infrared Cell. Appl. Spectrosc., 56(1).
- Torres, O., Calladine, J. A., Duckett, S. B., George, M. W., & Perutz, R. N. (2015). Detection of sigma-alkane complexes of manganese by NMR and IR spectroscopy in solution: $(\eta^5 C_5H_5)Mn(CO)_2(ethane)$ and $(\eta^5 C_5H_5)Mn(CO)_2(isopentane)$. Chem. Sci., 6(1), 418-424. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28936300
- Yang, J. (2003). Time Resolved Infra-Red Spectroscopy of Transient Species in Conventional and Supercritical Fluid Solutions. (PhD Thesis). University of Nottingham, Nottingham. pp. 70.
- Yang, J., N'Guessan, B. R., Dedieu, A., Grills, D. C., Sun, X. Z., & George, M. W. (2009). Experimental and Theoretical Investigation into the Formation and reactivity M(Cp)₂(CO)₂ (M=Mn or Re) in liquid and supercritical CO₂ and the effect of different CO₂ Coordinatio Modes on Reaction Rates with CO, H₂ and N₂. Organomets., 28(11), 3113-3122.
- Zhou, M., Andrews, L., & Bauschlicher, C. W. (2001). Spectroscopic and Theoretical Investigations of Vibrational Frequencies in Binary Unsaturated Transition-Metal Carbonyl Cations, Neutrals, and Anions. Chem. Rev., 101, 1931-1961.